K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

Áp dụng BĐT Am-Gm ta được:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab^2c}{ca}}=2b^2\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2c^2\)

\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{a^2bc}{bc}}=2a^2\)

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a^2+b^2+c^2=1\)

Vậy giá trị nhỏ nhất của \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}=1\)

Câu 1: 

Số đối của a/b là -a/b

\(\dfrac{a}{b}-\dfrac{c}{d}=\dfrac{ad-bc}{bd}\)

\(\dfrac{a}{b}\cdot\dfrac{c}{d}=\dfrac{ac}{bd}\)

Câu 2: 

Số nghịch đảo của a/b là b/a

\(\dfrac{a}{b}:\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ

26 tháng 12 2017

Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\)Dấu "=" xảy ra khi x=y=z 

\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\ge a+b+c\)

\(\frac{b.c}{a}+\frac{c.a}{b}+\frac{a.b}{c}\ge a+b+c\)

Dấu "=" xảy ra khi: a=b=c