Tìm GTLN của biểu thức:
a) \(A=-2x+\sqrt{x}\)
b) \(B=-x+5\sqrt{x}\)
c) \(C=-x+1+2\sqrt{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
Lời giải:
a. Để bt có nghĩa thì $x^2-x+1\geq 0$
$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$
$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)
b.
Để bt có nghĩa thì $x^2-5\geq 0$
$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$
$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$
c.
Để bt có nghĩa thì: $-x^2+2x-1\geq 0$
$\Leftrightarrow -(x^2-2x+1)\geq 0$
$\Leftrightarrow x^2-2x+1\leq 0$
$\Leftrightarrow (x-1)^2\leq 0(*)$
Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$
Nên $(*)\Leftrightarrow (x-1)^2=0$
$\Leftrightarrow x=1$
d.
Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
\(a.A=-2x+\sqrt{x}=-2\left(x-2.\dfrac{1}{4}\sqrt{x}+\dfrac{1}{16}\right)+\dfrac{1}{8}=-2\left(\sqrt{x}-\dfrac{1}{4}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\left(x\ge0\right)\)
\(\Rightarrow A_{Max}=\dfrac{1}{8}."="\Leftrightarrow x=\dfrac{1}{16}\left(TM\right)\)
\(b.B=-x+5\sqrt{x}=-\left(x-2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}\right)+\dfrac{25}{4}=-\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\left(x\ge0\right)\)
\(\Rightarrow B_{Max}=\dfrac{25}{4}."="\Leftrightarrow x=\dfrac{25}{4}\left(TM\right)\)
\(c.C=-x+1+2\sqrt{x-1}=-\left(x-1-2\sqrt{x-1}+1\right)+1=-\left(\sqrt{x-1}-1\right)^2+1\le1\left(x\ge1\right)\)
\(\Rightarrow C_{Max}=1."="\Leftrightarrow x=2\left(TM\right)\)