b1 tìm x,y thuộc z
a) 25- y2 = 8.(x-2009)2
b) 6x2+5y2-74
b2) A=\(\sqrt{1+2+3+....+\left(n+1\right)+n+\left(n-1\right)+....+3+2+1}\)
rút gọn A A(n ∈ N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\text{}\text{}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)
\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)
\(\Leftrightarrow x-\sqrt{x}+1>x\)
\(\Leftrightarrow x< 1\)
a: ĐKXĐ: \(x\ge0\)
Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
B1:Ta có ;n(n+5)- (n-3) (n+2)= n2 + 5n- n2- 2n+3n+6= 6n+6= 6.(n+1)
=> 6.(n+1) chia hết cho 6 với mọi n thuộc N
Vậy;...........................
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)