\(\dfrac{-1}{2}\)+\(\dfrac{3}{5}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{127}\)-\(\dfrac{7}{18}\)+\(\dfrac{4}{35}\)+\(\dfrac{2}{7}\)
Tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)
\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)
\(D=1+-1+\dfrac{1}{41}\)
\(D=0+\dfrac{1}{41}\)
\(D=\dfrac{1}{41}\)
\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)
=1/57
\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)
1: \(\dfrac{1}{2}+\dfrac{9}{10}+\dfrac{5}{6}-\dfrac{11}{14}-\dfrac{1}{3}+\dfrac{-4}{35}\)
\(=\left(\dfrac{1}{2}+\dfrac{5}{6}-\dfrac{1}{3}\right)+\dfrac{9}{10}-\left(\dfrac{11}{14}+\dfrac{4}{35}\right)\)
\(=\dfrac{3+5-2}{6}+\dfrac{9}{10}-\dfrac{55+8}{70}\)
\(=1+\dfrac{9}{10}-\dfrac{9}{10}\)
=1
\(\dfrac{2}{5}+\dfrac{1}{5}=\dfrac{2+1}{5}=\dfrac{3}{5}\)
\(\dfrac{2}{3}+\dfrac{5}{3}=\dfrac{2+5}{3}=\dfrac{7}{3}\)
\(\dfrac{3}{8}+\dfrac{4}{8}=\dfrac{3+4}{8}=\dfrac{7}{8}\)
\(\dfrac{6}{9}+\dfrac{2}{9}=\dfrac{6+2}{9}=\dfrac{8}{9}\)
\(\dfrac{12}{18}+\dfrac{7}{18}=\dfrac{12+7}{18}=\dfrac{19}{18}\)
\(\dfrac{7}{4}+\dfrac{2}{4}=\dfrac{7+2}{4}=\dfrac{9}{4}\)
a: \(1-\left(5\dfrac{4}{9}+a-7\dfrac{7}{18}\right):15\dfrac{3}{4}=0\)
=>\(\left(5+\dfrac{4}{9}+a-7-\dfrac{7}{18}\right):\dfrac{63}{4}=1\)
=>\(\left(a-2+\dfrac{1}{18}\right)=\dfrac{63}{4}\)
=>\(a-\dfrac{35}{18}=\dfrac{63}{4}\)
=>\(a=\dfrac{63}{4}+\dfrac{35}{18}=\dfrac{637}{36}\)
b: \(B=\left(\dfrac{2}{15}+\dfrac{5}{3}-\dfrac{3}{5}\right):\left(4\dfrac{2}{3}-2\dfrac{1}{2}\right)\)
\(=\dfrac{2+5\cdot5-3^2}{15}:\left(4+\dfrac{2}{3}-2-\dfrac{1}{2}\right)\)
\(=\dfrac{2+4^2}{15}:\left(2+\dfrac{2}{3}-\dfrac{1}{2}\right)\)
\(=\dfrac{18}{15}:\dfrac{13}{6}=\dfrac{6}{5}\cdot\dfrac{6}{13}=\dfrac{36}{65}\)
\(A=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}\)
\(A=\left(\dfrac{-9-2-7}{18}\right)+\left(\dfrac{21+4+10}{35}\right)+\dfrac{1}{127}\)
\(A=-1+1+\dfrac{1}{127}\)
\(A=\dfrac{1}{127}\)
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.4}+\dfrac{1}{3.4.5.4}+...+\dfrac{1}{98.99.100.4}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.\left(5-1\right)}+\dfrac{1}{3.4.5.\left(6-2\right)}+...+\dfrac{1}{98.99.100.\left(101-97\right)}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5-1.2.3.4}+\dfrac{1}{3.4.5.6-2.3.4.5}+...+\dfrac{1}{98.99.100.101-97.98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}-\dfrac{1}{1.2.3.4}+\dfrac{1}{3.4.5.6}-\dfrac{1}{2.3.4.5}+...+\dfrac{1}{98.99.100.101}-\dfrac{1}{97.98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{98.99.100.101}\)
\(B=\dfrac{1}{98.99.100.101}.4=\dfrac{1}{98.99.25.101}\)
tick cho mk nha
bài tự làm 100%
co gì chưa đc thì coi lại nha
9:
\(=5+\dfrac{1}{5}-\dfrac{2}{9}-2+\dfrac{1}{23}+\dfrac{73}{35}-\dfrac{5}{6}-8-\dfrac{2}{7}+\dfrac{1}{18}\)
\(=\left(5-2-8\right)+\left(\dfrac{1}{5}+\dfrac{73}{35}-\dfrac{2}{7}\right)+\left(-\dfrac{2}{9}+\dfrac{1}{18}-\dfrac{5}{6}\right)+\dfrac{1}{23}\)
\(=\left(-5\right)+\dfrac{7+73-10}{35}+\dfrac{-4+1-15}{18}+\dfrac{1}{23}\)
\(=-5+2-1+\dfrac{1}{23}=-4+\dfrac{1}{23}=-\dfrac{91}{23}\)
10: \(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}-\dfrac{2}{9}-\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
=1/64
=(-1/2-1/9-7/18)+(3/5+4/35+2/7)+1/127
=(-9/18-2/18-7/18)+(21/35+4/35+10/35)+1/127
=-1+1+1/127
=1/127