GTNN
A = 4x\(^{^{ }2}\) - 12x + 10
B = 3y\(^2\) + 6y + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: Ta có: \(B=x^2+4x+9y^2-6y-1\)
\(=x^2+4x+4+9y^2-6y+1-6\)
\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)
Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)
\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)
d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\\ 3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+2x^2+36=0\\ \Leftrightarrow\left(x-y\right)^2+2x^2+36=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+2x^2+36\ge36>0\right]\\ 3x^2+6y^2-12x-20y+40=0\\ \Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+28\right)=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-\dfrac{10}{3}y+\dfrac{14}{3}\right)=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}+\dfrac{17}{9}\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=3y^2+6y+5\)
\(\Leftrightarrow A=3\left(y^2+2y+1\right)+2\)
\(\Leftrightarrow A=3\left(y+1\right)^2+2\ge2\) Với \(\forall y\in R\)
Dấu "=" xảy ra khi y = -1
Vậy GTNN của A là 2 khi y = -1
\(B=\left(x+1\right)\left(x^2+4x+5\right)\left(x+5\right)\)
\(\Leftrightarrow B=\left(x^2+6x+5\right)\left(x^2+4x+5\right)\)
\(\Leftrightarrow B=\left(t+x\right)\left(t-x\right)=t^2-x^2\)
\(\Leftrightarrow B=x^4+10x^2+25-x^2=x^4+9x^2+25\)
\(\Leftrightarrow B=\left(x^2+\dfrac{9}{2}\right)^2+\dfrac{19}{4}\ge\left(\dfrac{9}{2}\right)^2+\dfrac{19}{4}=25\) Với \(\forall x\in R\)
Dấu "=" xảy ra khi x = 0
Vậy GTNN Của B là 25 khi x = 0 .
![](https://rs.olm.vn/images/avt/0.png?1311)
2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y)
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm
dau = cay ra <=> x=y=z=1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-2xy+6y^2-12x+3y+45\)
\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)
\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)
\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)
\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)
Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)
\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)
Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)
a) \(A=4x^2-12x+10\)
\(A=4x^2-12x+9+1\)
\(A=\left(2x-3\right)^2+1\)
Vì \(\left(2x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-1,5\)
Vậy \(MIN_A=1\Leftrightarrow x=-1,5\)
b) \(B=3y^2+6y+5\)
\(B=3\left(y^2+2y+\dfrac{5}{3}\right)\)
\(B=3\left(y^2+2y+1+\dfrac{2}{3}\right)\)
\(B=3\left(y+1\right)^2+2\)
Vì \(3\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(y+1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
Vậy \(MIN_B=2\Leftrightarrow x=-1\)