Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x+3}=\frac{y-3}{x}\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định \(x,y>0\)
Hệ đã cho tương đương với
\(\hept{\begin{cases}\sqrt{x}-\sqrt{y}+\frac{3}{\sqrt{x}}-\frac{3}{\sqrt{y}}=0\left(1\right)\\2x-\sqrt{xy}=1\left(2\right)\end{cases}}\)
Giải (1) \(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)-3\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(1-\frac{3}{\sqrt{xy}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-\sqrt{y}=0\\1-\frac{3}{\sqrt{xy}}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{y}\\\frac{3}{\sqrt{xy}}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=y\\\sqrt{xy}=3\end{cases}.}\)
Với x=y ta thế vào (2) có \(2x-\sqrt{x^2}=1\Leftrightarrow x=1\left(TMĐK\right)\)
\(\Rightarrow x=y=1\)
Với \(\sqrt{xy}=3\)thế vào (2) có \(2x-3=1\Leftrightarrow x=2\left(TMĐK\right)\)
\(\Rightarrow\sqrt{2y}=3\Leftrightarrow y=\frac{9}{2}\left(TMĐK\right)\)
Vậy hệ có 2 nghiệm.......
Xét phương trình đầu ta có:
\(\frac{3}{xyz}=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz.\sqrt[3]{xyz}\le1\)
\(\Leftrightarrow xyz\le1\)(1)
Xét phương trình 2 ta có
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)
\(\Leftrightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=9\)
\(\Leftrightarrow\frac{3}{xyz}+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=9\)
\(\Leftrightarrow9=\frac{1}{xyz}+\frac{1}{xyz}+\frac{1}{xyz}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\ge9\sqrt[9]{\frac{1}{xyz}}\)
\(\Rightarrow1\ge\sqrt[9]{\frac{1}{xyz}}\)
\(\Leftrightarrow xyz\ge1\)(2)
Từ (1) và (2) suy ra xyz = 1
Dấu = xảy ra khi x = y = z = 1
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
\(\hept{\begin{cases}\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=\frac{3}{2}\left(1\right)\\x+y+xy=9\left(2\right)\end{cases}}\)
Đặt \(\sqrt{\frac{x}{y}}=a>0\) thì
\(\left(1\right)\Leftrightarrow a+\frac{1}{a}=\frac{3}{2}\)
\(\Leftrightarrow2a^2-3a+2=0\)
Ta có: \(2a^2-3a+2=2\left(a-1\right)^2+a>0\)
Vậy hệ vô nghiệm
Ta có: \(\sqrt{8x-y+5}+\sqrt{x+y-1}=3\sqrt{x}+2\)
\(\Leftrightarrow8x-y+5+x+y-1+2\sqrt{\left(8x-y+5\right)\left(x+y-1\right)}=9x+12\sqrt{x}+4\)
\(\Leftrightarrow9x+4+2\sqrt{8x^2-y^2+7xy-3x+6y-5}=9x+4+12\sqrt{x}\)
\(\Leftrightarrow\sqrt{8x^2-y^2+7xy-3x+6y-5}=6\sqrt{x}\)
\(\Leftrightarrow8x^2-y^2+7xy-3x+6y-5=36x\)
\(\Leftrightarrow8x^2-y^2+7xy-39x+6y-5=0\)
\(\Leftrightarrow\left(8x^2+8xy-40x\right)-y^2-xy-5+x+6y=0\)
\(\Leftrightarrow8x\left(x+y-5\right)-\left(y^2+xy-5y\right)+\left(x+y-5\right)=0\)
\(\Leftrightarrow\left(x+y-5\right)\left(8x-y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5-x\\y=8x+1\end{cases}}\)
Thay vào pt dưới ta có:
\(\sqrt{xy}+\frac{1}{\sqrt{x}}=\sqrt{8x-y+5}\left(1\right)\)
+) với y=5-x (1) thành:
\(\sqrt{x\left(5-x\right)}+\frac{1}{\sqrt{x}}=\sqrt{8x-\left(5-x\right)+5}\)
\(\Leftrightarrow\sqrt{5x-x^2}+\frac{1}{\sqrt{x}}=\sqrt{9x}\)\(\Leftrightarrow\sqrt{5x^2-x^3}+1=3x\)\(\Leftrightarrow\sqrt{5x^2-x^3}=3x-1\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\5x^2-x^3=9x^2-6x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x^3+4x^2-6x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{3}\\x=1\left(tm\right)\end{cases}}}\)
Với x=1=>y=4
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)