công thức a là số hạng thứ bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1; Số số hạng = (số cuối - số đầu) : khoảng cách + 1
2; tổng = (số cuối + số đầu)\(\times\) số số hạng : 2
3; số thứ n = khoảng cách \(\times\)(n-1) + số đầu
4 tìm số đó đứng thứ mấy
vị trí của số cần tìm: (số đó - số đầu): khoảng cách + 1
1.SSH = ( SC - SĐ ) : KC + 1
2.T = ( SĐ + SC ) x SSH :2
3.STn = ( n - 1 ) x KC + SĐ
4. Số đó đứng thứ mấy = ( Số đó - SĐ ) : KC +1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
\(\begin{array}{l}{u_1} + {u_2} + {u_3} = - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d = - 1\\ \Leftrightarrow 3{u_1} + 3d = - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d = - 1\\ \Leftrightarrow 3d = - 2\\ \Leftrightarrow d = - \frac{2}{3}\end{array}\)
Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)
b) Ta có:
\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)
- 67 là số hạng thứ 102 của cấp số cộng
c) Ta có:
\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = - 10\\ \Leftrightarrow n = - 9\end{array}\)
7 không là số hạng của cấp số cộng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \({u_n} = - 3 + \left( {n - 1} \right).5\)
b) Ta có:
\(\begin{array}{l}492 = - 3 + \left( {n - 1} \right).5\\ \Leftrightarrow n - 1 = 99\\ \Leftrightarrow n = 100\end{array}\)
492 là số hạng thứ 100 của cấp số cộng
c) Ta có: \(300 = - 3 + \left( {n - 1} \right).5 \Leftrightarrow n - 1 = 60,6\)
300 không là số hạng của cấp số cộng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_2}.q = {u_1}.{q^2}\)
\({u_4} = {u_3}.q = {u_1}.{q^3}\)
\({u_5} = {u_4}.q = {u_1}.{q^4}\)
b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).