K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

a, \(\left(x-5\right).30\%=\dfrac{20x}{100}+5\Rightarrow\left(x-5\right).\dfrac{3}{10}=\dfrac{x}{5}+5\)

\(\Rightarrow\dfrac{3}{10}x+\dfrac{3}{2}=\dfrac{x}{5}+5\Rightarrow\dfrac{3}{10}x-\dfrac{x}{5}=5-\dfrac{3}{2}\)

\(\Rightarrow x\left(\dfrac{3}{10}-\dfrac{1}{5}\right)=\dfrac{7}{2}\Rightarrow\dfrac{1}{10}x=\dfrac{7}{2}\Rightarrow x=35\)

b, \(\dfrac{x+3}{x-2}\in Z\)

Ta có: \(\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)

Để \(\dfrac{x+3}{x-2}\in Z\Leftrightarrow\dfrac{5}{x-2}\Leftrightarrow5⋮\left(x-2\right)\Rightarrow\left(x-2\right)\in U\left(5\right)\)

\(\Rightarrow\left(x-2\right)\in\left\{1;5\right\}\Rightarrow x\in\left\{-1;3\right\}\)

Kiến thức lâu k học :> sai gì bỏ qua giùm :<<

10 tháng 8 2018

Thank kiu bạn nha

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

5 tháng 6 2023

\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)

\(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)

\(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)

\(\dfrac{40}{14}=\dfrac{20}{7}\)

\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)

=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)

=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)

=\(\dfrac{9}{2}+\dfrac{1}{11}\)

=\(\dfrac{101}{22}\)

\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)

\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)

\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)

\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)

\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)

\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)

\(x=\dfrac{102}{21}=\dfrac{34}{7}\)

15 tháng 7 2023

(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x}+3}.\)

(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).

Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)

\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)

(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)

\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).

Vậy: \(x\in\varnothing.\)

(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))

\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)

(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)

Vậy: \(x=0.\)

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

NV
27 tháng 12 2022

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
27 tháng 12 2022

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)

6 tháng 8 2023

\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)

__

Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)

\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)

 

 

6 tháng 8 2023

Điều kiện có sai k v? Xem lại giúp mình với

`@` `\text {Ans}`

`\downarrow`

`a)`

\(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)

\(\dfrac{6}{5}-x=\dfrac{2}{3}\)

\(x=\dfrac{6}{5}-\dfrac{2}{3}\)

\(x=\dfrac{18}{15}-\dfrac{10}{15}\)

\(x=\dfrac{8}{15}\)

Vậy, `x =`\(\dfrac{8}{15}\)

`b)`

\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)

\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)

\(x=\dfrac{4}{17}\)

Vậy, \(x=\dfrac{4}{17}\)

`c)`

\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)

\(x=\dfrac{34}{7}\)

Vậy, `x = `\(\dfrac{34}{7}\)

13 tháng 7 2023

a) \(\dfrac{3}{2}x\dfrac{4}{5}-x=\dfrac{2}{3}\Rightarrow\dfrac{6}{5}-x=\dfrac{2}{3}\Rightarrow x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18}{15}-\dfrac{10}{15}=\dfrac{8}{15}\)

b) \(x.3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}:\dfrac{17}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}.\dfrac{4}{17}\Rightarrow x=\dfrac{10}{3}.\dfrac{4}{17}:\dfrac{10}{3}=\dfrac{10}{3}.\dfrac{4}{17}.\dfrac{3}{10}=\dfrac{4}{17}\)

c) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\dfrac{1}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{11}{3}-\dfrac{5}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{22}{6}-\dfrac{15}{6}\Rightarrow\dfrac{17}{3}:x=\dfrac{7}{6}\Rightarrow x=\dfrac{17}{3}:\dfrac{7}{6}=\dfrac{17}{3}.\dfrac{7}{6}=\dfrac{119}{18}\)