K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2023

a:

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC; OA;AO lần lượt là phân giác của \(\widehat{BOC};\widehat{BAC}\)

Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{\sqrt{2}}\)

=>\(\widehat{BOA}=45^0\)

OA là phân giác của \(\widehat{BOC}\)

=>\(\widehat{BOC}=2\cdot\widehat{BOA}=90^0\)

Xét tứ giác OBAC có \(\widehat{OBA}=\widehat{BOC}=\widehat{OCA}=90^0\)

nên OBAC là hình chữ nhật

Hình chữ nhật OBAC có OB=OC

nên OBAC là hình vuông

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc BOM và DB=DM

Xét (O) có

EM,EC là tiếp tuyến

Do đó: EM=EC và OE là phân giác của góc MOC

\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)

\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{MOC}\right)\)

\(=\dfrac{1}{2}\cdot\widehat{BOC}=\dfrac{1}{2}\cdot90^0=45^0\)

c: Gọi giao điểm của OA và BC là H

AB=AC

OB=OC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{KBA}+\widehat{KBO}=\widehat{OBA}=90^0\)

\(\widehat{CBK}+\widehat{BKO}=90^0\)(ΔBHK vuông tại H)

mà \(\widehat{OBK}=\widehat{OKB}\)(OK=OB)

nên \(\widehat{KBA}=\widehat{CBK}\)

=>BK là phân giác của góc ABC

Xét ΔABC có

BK,AK là các đường phân giác

Do đó: K là tâm đường tròn nội tiếp ΔABC

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

3 tháng 3 2021
answer-reply-image Good luck~
8 tháng 10 2023

là \(\sqrt{2}\)R ko phải R\(\sqrt{2}\) hum