K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 8 2021

A B C D

ta có \(AC=\sqrt{AD^2+DC^2}>\sqrt{AD^2+BA^2}=DB\) vậy AC>BD

. từ trên ta có :

\(\hept{\begin{cases}AC^2=AD^2+DC^2\\BD^2=AD^2+BA^2\end{cases}\Rightarrow AC^2-BD^2=CD^2-AB^2}\)

11 tháng 4 2022

-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)

a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)

\(\Rightarrow\)△OAB∼△OCD (g-g).

b) \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).

c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)

-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)

\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)

 

NV
24 tháng 3 2021

Ta có: \(AC^2+BD^2=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)^2+\left(\overrightarrow{BC}+\overrightarrow{BA}\right)^2\)

\(=AB^2+AD^2+2\overrightarrow{AB}.\overrightarrow{AD}+BC^2+BA^2+2\overrightarrow{BA}.\overrightarrow{BC}\)

\(=AB^2+AD^2+BC^2+AD^2+2\overrightarrow{AB}\left(\overrightarrow{AD}-\overrightarrow{BC}\right)\)

\(=AB^2+AD^2+BC^2+AD^2\)

a: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

ΔOAB đồng dạng với ΔOCD
=>OB/OD=AB/DC=1/2

=>OB/1=OD/2=5/3

=>OB=5/3cm; OD=10/3cm

 

18 tháng 7 2018





16 tháng 7 2023

loading...

Kéo dài DA và CB lần lượt về phía A và B cắt nhau tại E

Xét tam giác DCE có \(\widehat{DEC}\) = 1800 - (\(\widehat{EDC}\) + \(\widehat{ECD}\)) = 1800- 900 = 900

                      ⇒\(\Delta\)DEC vuông tại E

Xét \(\Delta\)AEB Theo pytago ta có: AE2 + BE2 = AB2

Tương tự ta có:                       DE2 + CE2 = DC2

Cộng vế với vế ta có:              AE2 + BE2 + DE2 + CE2 = AB2+DC2

                                             AE2 + CE2+BE2+DE2 = AB2+DC2 (1)

Xét \(\Delta\)AEC theo pytago ta có: AE2+ CE2 = AC2

Tương tự ta có:                      BE2 + DE2 = BD2

Cộng vế với vế ta có:             AE+ CE2 + BE2+ DE2 = AC2 + BD2 (2)

Từ (1) và (2) ta có: AC2 + BD2 = AB2 + DC2(đpcm)

                                            

 

10 tháng 11 2021

a, Vì ABID và ABCK là hbh nên \(AB=DI;AB=CK\)

Do đó \(DI=CK\Rightarrow DI-KI=CK-KI\)

Vậy \(KD=CI\)

b, Áp dụng Talet: \(\dfrac{DE}{EB}=\dfrac{DK}{AB}=\dfrac{CI}{AB}=\dfrac{IF}{FB}\left(DK=CI\right)\)

Suy ra EF//CD (Talet đảo)

Áp dụng Talet: \(\dfrac{AB}{EF}=\dfrac{DI}{EF}=\dfrac{BD}{BE}=\dfrac{BE+ED}{BE}=1+\dfrac{ED}{BE}=1+\dfrac{DK}{AB}=1+\dfrac{CD-CK}{AB}=1+\dfrac{CD-AB}{AB}=\dfrac{CD}{AB}\)

Vậy \(AB^2=EF\cdot CD\)

16 tháng 11 2021

câu b dòng đầu sao bằng \(\dfrac{IF}{FB}\) được v