giai hệ pt:
\(\hept{\begin{cases}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=2xy\left(xy+1\right)\left(1\right)\\\left(x+y\right)\left(xy+1\right)=\left(2xy\right)^2\left(2\right)\end{cases}}\)
Công theo vế 2 pt trên cho nhau: \(\left(x+y\right)^2+\left(x+y\right)\left(xy+1\right)=2xy\left(xy+1\right)+\left(2xy\right)^2\)
\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+2xy\right)+\left(xy+1\right)\left(x+y-2xy\right)=0\)
\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+3xy+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=2xy\\x+y+3xy+1=0\end{cases}}\)
* Với x + y = 2xy.
Thay vào (1) ta có: \(\left(2xy\right)^2=2xy\left(xy+1\right)\)
\(\Leftrightarrow2xy\left(xy-1\right)=0\Rightarrow\orbr{\begin{cases}xy=0\\xy=1\end{cases}}\)
+) Với xy = 0 suy ra x +y = 0 => x =y = 0
+) Với xy = 1 => x +y = 2xy = 2
Theo hệ thức Viet đảo: x, y là hai nghiệm của hệ:
\(t^2-2t+1=0\Leftrightarrow t=1\Rightarrow x=y=1\)
* Với x +y + 3xy + 1 = 0.
\(\Rightarrow x+y=-\left(3xy+1\right)\)
Thay vào (1) ta thu được: \(\left(3xy+1\right)^2=2xy\left(xy+1\right)\)
\(\Leftrightarrow7x^2y^2+4xy+1=0\) . Ta có: \(7x^2y^2+4xy+1=7t^2+4t+1=7\left(t+\frac{2}{7}\right)^2+\frac{3}{7}>0\forall t=xy\)
Do đó với x +y + 3xy + 1 = 0 thì pt vô nghiệm.
=> (x;y) = {(0;0) , (1;1)}
P/s: Em mới học giải hệ thôi nên ko chắc về cách giải lẫn cách trình bày đâu nha!
c) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Với y = 0 thay vào pt đầu suy ra \(x^2+1=0\) (vô nghiệm)
Xét y khác 0 khi đó HPT \(\Leftrightarrow\hept{\begin{cases}\frac{\left(x^2+1\right)}{y}+\left(x+y-2\right)=2\\\frac{\left(x^2+1\right)}{y}\left(x+y-2\right)=1\end{cases}}\)
Đặt \(\frac{x^2+1}{y}=a;x+y-2=b\)
Ta có: \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\) theo hệ thức Viet đảo: a, b là hai nghiệm của pt \(t^2-2t+1=0\Rightarrow t=1\Rightarrow a=b=1\)
Do b = 1 suy ra \(x+y-2=1\Leftrightarrow x=3-y\).
Anh thử giải nốt xem sao?Em ko chắc đâu nhá!
dễ mà hehe:
x2+y2+xy+1=4y (1) |
(x2+1)(x+y−2)=y (2) |
x^2+y^2+xy+1=4y:
=> x^2+1=4y-y^2-xy
=> x^2+1=y(4-y-x)
=> thay gt x^2+1 vào cái pt (2)
=> y(4-y-x)(x+y-2)=y
=> -y(x+y-4)(x+y-2)=y
=> (x+y-4)(x+y-2)=-1
Đặt x+y-3=t
=> x+y-4=t-1 và x+y-2=t+1
=> t^2-1=-1
=> t^2=0
=> t=0
=> x+y-3=0
=> x+y=3
=> x=y-3
Giai pt (1):
(x+y)^2-2xy+xy+1=4y
=> 10-xy=4y
=> 10-(3-y)y-4y=0
=> 10-3y+y^2-4y=0
=> y^2-7y+10=0
=> 4y^2-28y+40=0
=> (2y-7)^2=9
=> 2y-7=3 hoặc -3
Tự tìm y và tìm nốt x qua x+y=3 nhá
Giúp đến thế thôi !!!
\(\hept{\begin{cases}x^2+1+y\left(x+y\right)=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Với y=0 hệ phương trình trở thành \(\hept{\begin{cases}x^2+1=0\\\left(x^2+1\right)\left(x-2\right)=0\end{cases}}\)(vô nghiệm)
Với y\(\ne\)0 hệ trở thành \(\hept{\begin{cases}\frac{x^2+1}{y}+\left(x+y\right)=4\\\left(\frac{x^2+1}{y}\right)\left(x+y-2\right)=1\end{cases}}\)
Đặt a=\(\frac{x^2+1}{y},b=x+y\)thay vào hệ (1) ta được \(\hept{\begin{cases}a+b=4\\a\left(b-2\right)=1\end{cases}}\)
Giải ta được a=1; b=3
Với a=1; b=3 => \(\hept{\begin{cases}\frac{x^2+1}{y}=1\\x+y=3\end{cases}}\)
Giải được nghiệm của hệ (x;y)=(1;2) và (c;y)=(-2;5)
KL: