K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 9 2021

17.

Câu 17 này đề bài sai (ở độ dài AB, nếu ko nhìn lầm thì AB=41 là 1 con số phi lý)

Cách tính như sau:

Qua \(C_1\) kẻ các đường thẳng song song AC và BC, cắt \(AA_1\) và \(BB_1\) kéo dài tại D và E

\(\Rightarrow ABC.DEC_1\) là lăng trụ đứng có thể tích V

\(V=CC_1.S_{ABC}=6.\dfrac{AB^2\sqrt{3}}{4}=\dfrac{3AB^2\sqrt{3}}{2}\)

Gọi thể tích khối đa diện cần tính là \(V_1\)

\(\Rightarrow\dfrac{V_1}{V}=\dfrac{1}{3}\left(\dfrac{AA_1}{AD}+\dfrac{BB_1}{BE}+\dfrac{CC_1}{CC_1}\right)=\dfrac{5}{6}\)

\(\Rightarrow V_1=\dfrac{5}{6}V=...\)

NV
15 tháng 9 2021

Hình vẽ câu 17:

undefined

24 tháng 5 2021

17 do you

18 shouldn't they

19 does she

20 can't he

21 will you

22 shouldn't they

23 does she

24 can they

25 doesn't it

24 tháng 5 2021

17 do you

18 shouldn't they

19 does she

20 can't he

21 will you

22 shouldn't they

23 does she

24 can they

25 doesn't it

NV
22 tháng 4 2022

16.

\(\lim\dfrac{u_n}{v_n}=+\infty\)

17.

\(SA\perp\left(ABC\right)\Rightarrow SA\perp AB\Rightarrow\Delta SAB\) vuông tại A (B đúng)

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\) (C đúng)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\) (D đúng)

18.

Tập hợp điểm cách đều 2 điểm AB cho trước là mặt phẳng trung trực của AB

19.

\(\lim\limits_{x\rightarrow1}\dfrac{x-1}{2x-2}=\lim\limits_{x\rightarrow1}\dfrac{x-1}{2\left(x-1\right)}=\dfrac{1}{2}\)

9 tháng 3 2022

6. B
7. D
8. C
9. A
10. A
11. A
12. A
13. A
14. B
15. C
16. B
17. C
18. A
19. C
 

25 tháng 8 2021

Câu 19 : Phép đối xứng qua tâm M biến đường tròn (O;R) thành đường tròn (O' ; R)

=> Đường tròn này cố định 

H thuộc đường tròn này đấy. CM thì dùng Kiến thức lớp 9 ấy. Thế nhá

25 tháng 8 2021

M là trung điểm của BC nhá

21 tháng 4 2022

câu 17. c

câu 18. a

câu 9. d

câu 15. a

câu 12. b

câu 7. 

a, b, g, i, h

28D

27: Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}a\cdot2+b=3\\a\cdot\left(-1\right)+b=0\end{matrix}\right.\Leftrightarrow a=1\)

=>Chọn A

43:

tọa độ A là;

y=0 và x+3=0

=>A(-3;0)

Tọa độ B là;

-x+3=0 và y=0

=>B(3;0)

Tọa độ C là;

x+3=-x+3 và y=x+3

=>x=0 và y=3

=>C(0;3)

A(-3;0); B(3;0); C(0;3)

\(AB=\sqrt{\left(3+3\right)^2+\left(0-0\right)^2}=6\)

\(AC=\sqrt{\left(0+3\right)^2+\left(3-0\right)^2}=3\sqrt{2}\)

BC=căn (0-3)^2+(3-0)^2=3*căn 2(cm)

Vì BC^2+AC^2=AB^2 và BC=AC

nên ΔABC vuông cân tại B

P=1/2(3căn 2+3căn 2+6)=3căn 2+3(cm)

S=1/2*3*căn 2*3*căn 2=9

=>r=9/3căn 2+3=-3+3căn 2=1,243

=>Chọn D

NV
20 tháng 3 2022

17.

Gọi số vi khuẩn ban đầu là x

Sau 5 phút số vi khuẩn là: \(x.2^5=64000\Rightarrow x=2000\)

Sau k phút:

\(2000.2^k=2048000\Rightarrow2^k=1024=2^{10}\)

\(\Rightarrow k=10\)

NV
20 tháng 3 2022

18.

\(S_{2019}=\left(\dfrac{1}{2}\right)^1+1+\left(\dfrac{1}{2}\right)^2+1+...+\left(\dfrac{1}{2}\right)^{2019}+1\)

\(=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}+2019\)

Xét \(S=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=\dfrac{1}{2}\\n=2019\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{2}.\dfrac{\left(\dfrac{1}{2}\right)^{2019}-1}{\dfrac{1}{2}-1}=1-\dfrac{1}{2^{2019}}\)

\(\Rightarrow S_{2020}=2019+S=2020-\dfrac{1}{2^{2019}}\)

19. C là khẳng định sai, ví dụ: \(u_n=2\) ; \(v_n=-\dfrac{1}{n}\)