Tìm x € Z
2010 - |x - 10| có GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Đặt x+10=a , ta có:
\(A=\frac{x}{\left(x+10\right)^2}=\frac{a-10}{a^2}=\frac{1}{a}-\frac{10}{a^2}=-10\cdot\left(\frac{1}{a^2}-2\cdot\frac{1}{a}\cdot\frac{1}{20}+\frac{1}{20^2}\right)+\frac{10}{20^2}\)
\(=-10\cdot\left(\frac{1}{a}-\frac{1}{20}\right)^2+\frac{1}{40}\)
Vì \(-10\cdot\left(\frac{1}{a}-\frac{1}{20}\right)^2\le0\forall a\)
\(\Rightarrow A\le\frac{1}{40}\)
=> GTLN của A là 1/40 <=>1/a-1/20=0 <=>a=20 =>x+10=20 =>x=10
\(Q=\sqrt{x+3}+\sqrt{10-x}\)
\(\Leftrightarrow Q^2=\left(\sqrt{x+3}+\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+3}\right)^2+\left(\sqrt{10-x}\right)^2\right]\)
\(\Leftrightarrow Q^2\le2\left(x+3+10-x\right)=2.13=26\)
\(\Leftrightarrow Q\le\sqrt{26}\)
\(maxQ=\sqrt{26}\Leftrightarrow x+3=10-x\Leftrightarrow x=\dfrac{7}{2}\)
Áp dụng BĐT Bunhiacopski:
\(Q=\sqrt{x+3}+\sqrt{10-x}\\ \Leftrightarrow Q^2=\left(\sqrt{x+3}+\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left(x+3+10-x\right)=2\cdot13=26\\ \Leftrightarrow Q\le\sqrt{26}\\ Q_{max}=\sqrt{26}\Leftrightarrow x+3=10-x\Leftrightarrow x=\dfrac{7}{2}\)
\(A=\left(x^2-4x+4\right)+2014=\left(x-2\right)^2+2014\ge2014\)Vậy minA = 2014 khi x = 2 (maxA không tồn tại)
Câu B có thể bạn đã viết nhầm hạng tử cuối nên mình xin giải cả 2 trường hợp:
* \(B=10-x^2-2x=-\left(x^2+2x+1\right)+11=-\left(x+1\right)^2+11\le11\)=> maxB = 11 khi x = -1 (minB không tồn tại)
** \(B=10-x^2-2x^2=-3x^2+10\le10\)=> maxB = 10 khi x = 0 (minB không tồn tại)
GTLN là gì vậy bn
\(2010-\left|x-10\right|\)
ta có :
\(\left|x-10\right|\ge0\)
\(\Rightarrow2010-\left|x-10\right|\le2010\)
dấu "=" xảy ra khi |x - 10| = 0
=> x - 10 = 0
=> x = 10
vậy_