Tìm số nguyên n sao cho :
\(n^3-n^2+2n+7⋮n^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
a,
7 ⋮ n + 1 (đk n ≠ - 1)
n + 1 \(\in\) Ư(7) = {-7; - 1; 1; 7}
Lập bảng ta có:
n + 1 | -7 | - 1 | 1 | 7 |
n | -8 | -2 | 0 | 6 |
Theo bảng trên ta có:
n \(\in\) {-8; -2; 0; 6}
b, (2n + 5) ⋮ (n + 1) Đk n ≠ - 1
2n + 2 + 3 ⋮ n + 1
2.(n + 1) + 3 ⋮ n + 1
3 ⋮ n + 1
n + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
n + 1 | - 3 | -1 | 1 | 3 |
n | -4 | -2 | 0 | 2 |
Theo bảng trên ta có:
n \(\in\) {-4; -2; 0; 2}
a) Vì: m là số nguyên tố
=> m>1
=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)
=> Là hợp số
=> Vô lí
Vậy ko có SNT m nào t/m.
b) Vì: n thuộc N hay n là SNT cx ok nhá
=> n-2<n^2+4
Vì SNT đc phân tích thành 1 và chính nó
=> n-2=1
=> n=3
c) Giải thích tương tự câu b
=> Tìm đc n=2
=> m=1.7=7
d) Phân tích thành nhân tử r lm giống như câu b,c thoy
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài