K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2023

\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)

a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

mà n là số nguyên

nên n thuộc {0;1;-1}

c: 2n+5/n-3 là số nguyên

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;14;-8}

26 tháng 12 2023

a, 

7 ⋮ n + 1 (đk n ≠ - 1)

n + 1  \(\in\) Ư(7) = {-7; - 1; 1; 7}

Lập bảng ta có:

n + 1  -7  - 1 1 7
n -8 -2 0 6

Theo bảng trên ta có:

\(\in\) {-8; -2; 0; 6}

 

26 tháng 12 2023

b, (2n + 5) ⋮ (n + 1)   Đk n ≠ - 1

     2n + 2 + 3 ⋮ n + 1

     2.(n + 1) + 3 ⋮ n + 1

                      3 ⋮ n + 1

    n + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}

  Lập bảng ta có: 

n + 1  - 3 -1 1 3
n -4 -2 0 2

Theo bảng trên ta có:

\(\in\) {-4; -2; 0; 2}

 

4 tháng 1 2022

1,N=3

2,N=6

11 tháng 1 2019

a) Vì: m là số nguyên tố 

=> m>1

=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)

=> Là hợp số 

=> Vô lí

Vậy ko có SNT m nào t/m.

b) Vì: n thuộc N hay n là SNT cx ok nhá

=> n-2<n^2+4

Vì SNT đc phân tích thành 1 và chính nó

=> n-2=1

=> n=3

c) Giải thích tương tự câu b

=> Tìm đc n=2

=> m=1.7=7

d) Phân tích thành nhân tử r lm giống như câu b,c thoy

2 tháng 8 2023

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài