1/19 + 2/18 + 3/17 + ..... + 18/2 + 19/1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19 ( vì ta cộng với 19 số 1 nên phải trừ 19 )
= \(\frac{20}{1}\)+ \(\frac{20}{2}\)+ \(\frac{20}{3}\)+...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)- 19
= \(\frac{20}{2}\)+ \(\frac{20}{3}\)+...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
= \(\frac{20}{2}\)+ \(\frac{20}{3}\)+ ...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)+ \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+ \(\frac{1}{3}\)+...+ \(\frac{1}{17}\)+ \(\frac{1}{18}\)+ \(\frac{1}{19}\)+ \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)= \(\frac{1}{20}\)
Phùng Quang Thịnh biến đổi sai 1 chỗ kìa
-19 = \(\frac{20}{20}-20\)chứ mà bạn
\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\) = \(\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+1\)
= \(\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{20}\)
=\(20.\left(\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}+\frac{1}{20}\right)\)
=\(20.\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}\right)\)
Vì tử số gấp 20 lần mẫu số nên phân số này bằng 20
bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20