Cho đa thức P(x) = \(7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2017-x^3\)\(x^3\)
Hỏi: chứng tỏ rằng đa thức P(x) không có nghiệm.
Giúp mk nữa nha mọi người. Ai nhanh nhất và đúng thì mk sẽ tích cho nha. Cảm ơn mọi người trước nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x)=5x^4-3x^3-7x^2+4x+2
B(x)=-5x^4+3x^3+6x^2-2x-30
A(x)+B(x)=-x^2+2x-28=-(x-1)^2-27<0
=>A(x) và B(x) ko đồng thời dương
Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2
Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2
(bạn biết cách chia đa thức một biến rồi chứ)
\(M\left(x\right)=-3x^2+6x-4+2x^2-5x+4=-x^2+x\)
Đặt M(x)=0
=>-x(x-1)=0
=>x=0 hoặc x=1
\(M\left(x\right)=-x^2+x=-x\left(x-1\right)\)
Giả sử: \(M\left(x\right)=0\)
\(\Leftrightarrow-x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(3x^4+x^2+2\)
Vì \(3x^4\ge0\)
\(x^2\ge0\)
\(\Rightarrow3x^4+x^2+2\ge2\)
Vậy đt trên vô nghiệm
a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)
\(=x^4+2x^2+1\)
b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)
\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)
\(=-4x^4+x^3+5x^2-2\)
\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)
\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)
\(=6x^4-x^3-x^2+4\)
c.Ta có
\(M(x)=x^4+2x^2+1=0\)
\(\Rightarrow x^4+2x^2=-1\)
mà \(x^4\ge0;2x^2\ge0\)
Vậy đa thức \(M(x)\)ko có nghiệm
Chúc bạn học tốt
cái cuối dấu cộng mới biết làm,,