Chứng minh đa thức \(x^2+6x+11\) vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
A=-x2+6x-19
A=-(x2-6x+9)-10
A=-(x-3)2-10
Vì \(\left(x-3\right)^2\ge0\)
Nên \(-\left(x-3\right)^2\le0\)
=>\(A\le-10\)
=>A vô nghiệm
\(A=-x^2+6x-19\)
\(A=-\left(x^2-6x+9+10\right)\)
\(A=-\left(x+3\right)^2-19\)
Vì \(-\left(x+3\right)^2\le\)Với mọi x
\(\Rightarrow A\le-19\)với mọi x
\(\Rightarrow A\)Vô nghiệm
\(9x^2+6x+8=0\)
\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1+7=0\)
\(\Leftrightarrow\left(3x+1\right)^2+7=0\)
\(\Leftrightarrow\left(3x+1\right)^2=-7\)( vô lý )
Vậy đa thức vô nghiệm
ta có :\(^{3x^2-6x\ge0}\)
15 >0
=}\(^{3x^2-6x+15\ge15}\)
=}đa thức \(3x^2-6x+15\)vô nghiệm
k giùm mình nhé
Ta có
\(9x^2+6x+10\)
\(=9x^2+3x+3x+1+9\)
\(=3x\left(3x+1\right)+3x+1+9\)
\(=\left(3x+1\right)\left(3x+1\right)+9\)
\(=\left(3x+1\right)^2+9\ge9.Với\forall x\in Q\)
Vậy đa thức trên vô nghiệm
Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x
6x lớn hơn hoặc bằng 0 với mọi x
=> 3x^2+6x+11 >11
=> Đa thức A(x) k có nghiệm
Vậy đa thức A(x) k có nghiệm.
\(A\left(x\right)=3x^2+6x+11\)
\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)
\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)
\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)
Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2+2\ge2\)
=> \(2x^2+\left(x+3\right)^2+2\ne0\)
=> \(A\left(x\right)\ne0\)
Vậy đa thức \(A\left(x\right)\)không có nghiệm
\(x^2+6x+11\)
\(=\left(x^2+6x+9\right)+2\)
\(=\left(x+3\right)^2+2\)\(>0\)
Vậy pt vô nghiệm
\(x^2+6x+11=\left(x^2+2.x.3+3^2\right)+2=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\)đa thức \(x^2+6x+11\) vô nghiệm
đpcm