K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2023

Sử dụng tính chất hình bình hành nha bạn

a: Xét ΔMNA và ΔMBA có

MN=MB

góc NMA=gócBMA
MA chung

Do đó: ΔMNA=ΔMBA
=>AN=AB

b: MN=MB

AN=AB

=>MA là trung trực của NB

=>MA vuông góc với NB

c: Xét ΔMCP có MN/MC=MB/MP

nên NB//CP

d: Xét ΔANC và ΔABP có

AN=AB

góc ANC=góc ABP

NC=BP

Do đó: ΔANC=ΔABP

=>góc NAC=góc BAP

=>góc NAC+góc NAB=180 độ

=>B,A,C thẳng hàng

a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :

  • MN = MB ( gt )
  • Góc AMN = góc AMB ( vì MA là phân giác )
  • MA : cạnh chung

\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )

\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )

b) Gọi giao điểm giữa NB và MA là I

     Xét \(\Delta\)INM và \(\Delta\)IBM có :

  • MN = MB ( gt )
  • Góc IMN = góc IMB ( vì MI là phân giác ) 
  • MI : cạnh chung

\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )

\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )

Mà góc MIN + góc MIB = 180 ( do kề bù )

nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .

18 tháng 12 2021

16 tháng 10 2023

a, C/m CP // AB
Xét ΔANM và ΔCNP. Ta có:
NM = NP (gt)
∠N1 = ∠N2 (đối đỉnh)
NA = NC (gt)

⇒ ΔANM = ΔCNP (c.g.c)
Nên: ∠A = ∠C1 (hai góc tương ứng)
Mà ∠A và ∠C1 ở vị trí so le trong
⇒ CP // AB
b, C/m MB = CP
Ta có: MA = CP (vì ΔANM = ΔCNP)
Mà MA = MB (gt)
⇒ MB = CP
c, C/m BC = 2MN
Nối BP. Xét ΔMBP và ΔCPB. Ta có:
BM = CP (gt)
∠B1 = ∠P1 (so le trong)
BP cạnh chung
⇒ ΔMBP = ΔCPB (c.g.c)
Nên: MP = BC (hai cạnh tương ứng)
Mà: MP = 2MN (vì N là trung điểm của MP)
⇒ BC = 2MN
 

a: Xét ΔABC có

N là trung điểm của AC

M là trung điểm của AB

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}=3\left(cm\right)\)

a: Xét tứ giác AMCD có

N là trung điểm của AC

N là trung điểm của MD

Do đó:AMCD là hình bình hành

Suy ra: CD//AM và CD=AM

=>CD//MB và CD=MB

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC