Tính (2x^3-2bx-24):(x^2+4x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\begin{array}{l}(8{x^3} + 2{x^2} - 6x):(4x) = 8{x^3}:(4x) + 2{x^2}:(4x) - (6x):(4x)\\ = (8:4).({x^3}:x) + (2:4).({x^2}:x) - (6:4).(x:x)\\ = 2{x^2} + \dfrac{1}{2}x - \dfrac{3}{2}\end{array}\)
b) \(\begin{array}{l}(5{x^3} - 4x):( - 2x) = 5{x^3}:( - 2x) - 4x:( - 2x) = (5: - 2).({x^3}:x) - (4: - 2).(x:x)\\ = - \dfrac{5}{2}{x^{3 - 1}} - ( - 2) = - \dfrac{5}{2}{x^2} + 2\end{array}\)
c) \(\begin{array}{l}( - 15{x^6} - 24{x^3}):( - 3{x^2}) = ( - 15{x^6}):( - 3{x^2}) + ( - 24{x^3}):( - 3{x^2})\\ = ( - 15: - 3).({x^6}:{x^2}) + ( - 24: - 3).({x^3}:{x^2})\\ = 5.{x^{6 - 2}} + 8.{x^{3 - 2}} = 5{x^4} + 8x\end{array}\)
1.
PT \(\Leftrightarrow (x+2)(x-3)(x-4)(x+6)=16x^2\)
\(\Leftrightarrow [(x+2)(x+6)][(x-3)(x-4)]=16x^2\)
\(\Leftrightarrow (x^2+8x+12)(x^2-7x+12)=16x^2\)
\(\Leftrightarrow (a+8x)(a-7x)=16x^2\) (đặt \(x^2+12=a\) )
\(\Leftrightarrow a^2+ax-72x^2=0\)
\(\Leftrightarrow (a-8x)(a+9x)=0\Rightarrow \left[\begin{matrix} a-8x=0\\ a+9x=0\end{matrix}\right.\)
Nếu \(a-8x=0\Leftrightarrow x^2+12-8x=0\Leftrightarrow (x-2)(x-6)=0\Rightarrow \left[\begin{matrix} x=2\\ x=6\end{matrix}\right.\)
Nếu \(a+9x=0\Leftrightarrow x^2+12+9x=0\Leftrightarrow x=\frac{-9\pm \sqrt{33}}{2}\)
Vậy...........
2.
PT \(\Leftrightarrow [(4x+7)(2x+1)][(4x+5)(x+1)]=9\)
\(\Leftrightarrow (8x^2+18x+7)(4x^2+9x+5)=9\)
\(\Leftrightarrow (2a+7)(a+5)=9\) (đặt \(a=4x^2+9x\) )
\(\Leftrightarrow 2a^2+17a+26=0\)
\(\Leftrightarrow (a+2)(2a+13)=0 \)\(\Rightarrow \left[\begin{matrix} a+2=0\\ 2a+13=0\end{matrix}\right.\)
Nếu \(a+2=0\Leftrightarrow 4x^2+9x+2=0\Leftrightarrow (4x+1)(x+2)=0\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{4}\\ x=-2\end{matrix}\right.\)
Nếu \(2a+13=0\Leftrightarrow 8x^2+18x+13=0\) (pt này dễ thấy vô nghiệm)
Vậy.........
b) x2 - 2x + 1 = 25x2
<=> (x - 1)2 - 25x2 = 0
<=> (x - 1 - 5x)(x - 1 + 5x) = 0
<=> (-4x - 1)(6x - 1) = 0
<=> \(\orbr{\begin{cases}-4x-1=0\\6x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{1}{6}\end{cases}}\)
a) 6x3 + 3x2 + 4x + 2
= ( 6x3 + 3x2 ) + ( 4x + 2 )
= 3x2( 2x + 1 ) + 2( 2x + 1 )
= ( 2x + 1 )( 3x2 + 2 )
=> ( 6x3 + 3x2 + 4x + 2 ) : ( 3x2 + 2 ) = 2x + 1
b) 2x3 - 26x - 24
= 2( x3 - 13x - 12 )
= 2( x3 + 4x2 - 4x2 + 3x - 16x - 12 )
= 2[ ( x3 + 4x2 + 3x ) - ( 4x2 + 16x + 12 ) ]
= 2[ x( x2 + 4x + 3 ) - 4( x2 + 4x + 3 ) ]
= 2( x2 + 4x + 3 )( x - 4 )
=> ( 2x3 - 26x - 24 ) : ( x2 + 4x + 3 ) = 2( x - 4 ) = 2x - 8
c) x3 - 7x + 6
= x3 - 3x2 + 3x2 + 2x - 9x - 6
= ( x3 - 3x2 + 2x ) + ( 3x2 - 9x + 6 )
= x( x2 - 3x + 2 ) + 3( x2 - 3x + 2 )
= ( x2 - 3x + 2 )( x + 3 )
=> ( x3 - 7x + 6 ) : ( x + 3 ) = x2 - 3x + 2
a,\(\left(6x^3+3x^2+4x+2\right)\div\left(3x^2+2\right)\)
\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=2x+1\)