Phân tích đa thức thành nhân tử
9(x-3)2 - 4(x+1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`= 36x^2-90x+225+15x-6x^2`
`= 30x^2-75x+225`
`= 15(2x^2-5x+9)`.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
= (x4 + 2x2 + 1) + (2x4 + x2 + 2) - (x2 + x+1)2
= [(x2 + 1)2 - (x2 + x+1)2 ] + (2x4 + x2 + 2)
= (x2 + 1 + x2 + x + 1). (x2 + 1 - x2 - x- 1) + (2x4 + x2 + 2)
= (2x2 + x + 2) (-x) + (2x4 + x2 + 2) = -2x3 - x2 - 2x + 2x4 + x2 + 2 = -2x3 + 2x4 - 2x + 2
= -2x3. (1 - x) + 2.(1 - x) = (1- x). (-2x3 + 2) = 2.(1 - x)(1- x3) = 2. (1- x). (1- x) .(1 + x + x2) = 2.(1-x)2. (1 + x + x2)
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(\left(x+1\right)\left(x+4\right)\right)\left(\left(x+2\right)\left(x+3\right)\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
- Đặt \(x^2+5x+5=a\)
\(=\left(a-1\right)\left(a+1\right)-24=a^2-1-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)-96\)
\(=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)
\(=\left(x^2+5x+16\right)\left(x+6\right)\left(x-1\right)\)
\(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=\left[3\left(x-3\right)-2\left(x+1\right)\right].\left[3\left(x-3\right)+2\left(x+1\right)\right]\)
\(=\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)\)
\(=\left(x-11\right)\left(5x-7\right)\)
\(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=3^2\left(x-3\right)^2-2^2\left(x+1\right)^2\)
\(=\left[3\left(x-3\right)\right]^2-\left[2\left(x+1\right)\right]^2\)
\(=\left[3x-9\right]^2-\left[2x+2\right]^2\)
\(=\left[3x-9-2x-2\right].\left[3x-9+2x+2\right]\)
\(=\left(x-11\right)\left(5x-7\right)\)
Chúc bạn học tốt.