phân tích đa thức thành nhan tử x^4+x^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)
\(=\left[\left(x^2+10x+12\right)-12\right]\left[\left(x^2+10x+12\right)+12\right]+128\)
\(=\left(x^2+10x+12\right)^2-12^2+128=\left(x^2+10x+12\right)^2-16\)
\(=\left(x^2+10x+12-4\right)\left(x^2+10x+12+4\right)=\left(x^2+10x+8\right)\left(x^2+10x+16\right)\)
\(=\left(x+2\right)\left(x+8\right)\left(x^2+10x+8\right)\)
a) 2x.(4x - 1)
câu b), c) mik ko biết
ko mong b cho mik
nhưng vẫn hi vọng b hoặc ai đó sẽ làm vậy
b) \(4x^4+1=4x^4+4x^2+1-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)
a) \(8x^2-2x-1=8x^2-4x+2x-1=4x.\left(2x-1\right)+\left(2x-1\right)=\left(2x-1\right)\left(4x+1\right)\)
b) \(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2=\left(2x^2+1\right)^2-4x^2=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)
c) \(\left(x^2-2x\right)\left(x^2-2x-1\right)-6=x^4-2x^3-x^2-2x^3+4x^2+2x-6\)
\(=x^4-4x^3+3x^2+2x-6=\left(x^4-3x^3\right)-\left(x^3-3x^2\right)+\left(2x-6\right)\)
\(=x^3.\left(x-3\right)-x^2.\left(x-3\right)+2.\left(x-3\right)=\left(x-3\right).\left(x^3-x^2+2\right)\)
\(=\left(x-3\right)\left[\left(x^3+x^2\right)+\left(-2x^2-2x\right)+\left(2x+2\right)\right]\)
\(=\left(x-3\right)\left[x^2\left(x+1\right)-2x.\left(x+1\right)+2.\left(x+1\right)\right]=\left(x-3\right)\left(x+1\right)\left(x^2-2x+2\right)\)
a, 8x^2-2x-1 = 8x2-4x+2x-1 = 4x ( 2x -1) + (2x-1) = (4x+1)(2x-1)
b) 4x4+1 = (2x2)2 + 4x2+ 1 - 4x2 = (2x2+1)2-(2x)2 = (2x2+1-2x)(2x2+1+2x)
x3 + 8y3 - 3x2 + 3x - 1
= ( x3 - 3x2 + 3x - 1 ) + 8y3
= ( x - 1 )3 + ( 2y )3
= ( x + 2y - 1 )( x2 - 2x + 1 - 2xy - 2y + 4y2 )
\(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x^2+2x\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
x3+2x2+2x+1= (x3+x2+x)+(x2+x+1)= x(x2+x+1)+(x2+x+1)= (x2+x+1)(x+1)
\(\left(1-x^2\right)-4x\left(1-x^2\right)\)
\(=\left(1-x^2\right)\left(1-x^2-4x\right)\)
\(=\left(1-x^2\right)\left(1-x\right)^2\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^4+x^2+1\)
\(=x^4+2x^2+1-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)