K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

mày ngu à

6 tháng 10 2018

sssongokusss: bạn thông minh nhỉ? thống kê hỏi đáp toàn trả lời linh tinh, hơn mấy trăm điểm SP tụt xuống âm hơn trăm điểm

10 tháng 8 2018

a) Nếu \(\frac{1}{2}x\ge0\Rightarrow x\ge0\) thì \(\left|\frac{1}{2}x\right|=3-2x\Rightarrow\frac{1}{2}x=3-2x\Rightarrow\frac{5}{2}x=3\Rightarrow x=\frac{6}{5}\) (nhận)

   Nếu \(\frac{1}{2}x< 0\Rightarrow x< 0\) thì \(\left|\frac{1}{2}x\right|=3-2x\Rightarrow-\frac{1}{2}x=3-2x\Rightarrow\frac{3}{2}x=3\Rightarrow x=2\) (loại)

Vậy x = 6/5

b) Nếu \(x-1\ge0\Rightarrow x\ge1\) thì \(\left|x-1\right|=3x+2\Rightarrow x-1=3x+2\Rightarrow-2x=3\Rightarrow x=\frac{-2}{3}\) (loại)

Nếu \(x-1< 0\Rightarrow x< 1\) thì \(\left|x-1\right|=3x+2\Rightarrow-\left(x-1\right)=3x+2\Rightarrow-x+1=3x+2\Rightarrow-4x=1\Rightarrow x=\frac{-1}{4}\) (nhận)

Vậy x = -1/4

19 tháng 2 2016

du vì ba của anh thanh niên bị ốm đến thăm 

19 tháng 2 2016

đưa lại đề cho mình đi,mình chẳng hiểu đề bn viết

13 tháng 12 2022

Bài 2:

\(M=8\left(x^2+y^2+2x^2y+2xy^2\right)-5\left(x+y\right)+2018\)

\(M=8\left[\left(x+y\right)^2-2xy+2xy\left(x+y\right)\right]-5+2018\)

\(=8\left[1-2xy+2xy\right]+2013\)

=8+2013

=2021

21 tháng 3 2019

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

21 tháng 3 2019

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

2 tháng 8 2019

b,|1-2x|+|5-2x|=4

==>|1-2x|+|5-2x|=|1-2x|+|2x-5|

==>|1-2x|+|2x-5| \(\geq\) |1-2x+2x-5|=|-4|=4

\(\geq\) 4 khi \(\hept{\begin{cases}1-2x\\2x-5\end{cases}}\)\(\geq\) 0 ==>1/2\(\leq \) x \(\leq \) 5/2

8 tháng 6 2016

Sorry . I am class 7a

xin lỗi, em lớp 6 vừa mới lên lớp 7 thui
5 tháng 5 2016

kho qua

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Bài 6:

a. \(A=[\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}(\sqrt{x}-1)}].(\sqrt{x}-1)\)

\(=\sqrt{x}+\frac{2}{\sqrt{x}}=\frac{x+2}{\sqrt{x}}\)

b. Áp dụng BĐT Cô-si cho các số dương:

$A=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$

Vậy gtnn của $A$ là $2\sqrt{2}$. Giá trị này đạt tại $x=2$

 

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Bài 7:

a.

\(x=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=1\)

Khi đó: \(B=\frac{1+3}{1+8}=\frac{4}{9}\)

b. \(A=\frac{(\sqrt{x}+1)(\sqrt{x}+3)+\sqrt{x}(2\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}-\frac{x+6\sqrt{x}+2}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{3x+3\sqrt{x}+3-(x+6\sqrt{x}+2)}{(\sqrt{x}+3)(2\sqrt{x}-1)}=\frac{2x-3\sqrt{x}+1}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{(2\sqrt{x}-1)(\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)

c.

\(P=AB=\frac{\sqrt{x}+3}{x+8}.\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-1}{x+8}\)

Áp dụng BĐT Cô-si:

$x+16\geq 8\sqrt{x}$

$\Rightarrow x+8\geq 8(\sqrt{x}-1)$

$\Rightarrow P\leq \frac{\sqrt{x}-1}{8(\sqrt{x}-1)}=\frac{1}{8}$

Vậy $P_{\max}=\frac{1}{8}$ khi $x=16$