tìm Min của A = x^4 + 3|x| + 2
B= ( x^4 + 5)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài đã đăng rồi bạn lưu ý không đăng lại làm loãng box toán.
Chắc câu a là \(2a^2\) ...
\(A=\left(a^2+b^2+2ab-4a-4b+4\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+4014\)
\(A=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+4014\ge4014\)
\(A_{min}=4014\) khi \(a=b=1\)
\(B=\left(x^2-7x\right)\left(x^2-7x+12\right)=\left(x^2-7x\right)^2+12\left(x^2-7x\right)\)
\(B=\left(x^2-7x+6\right)^2-36\ge-36\)
\(B_{min}=-36\) khi \(\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)
Bài này sử dụng tính chất cơ bản: \(\left|A\right|\pm A\ge0\) với mọi A
a.
\(A=\left|-x-3\right|+\left|4x+1\right|+\left|3x+5\right|+5x+2\)
\(A\ge\left|3x-2\right|+\left|3x+5\right|+5x+2=\left|3x-2\right|+\dfrac{3}{2}.\left|2x+\dfrac{10}{3}\right|+5x+2\)
\(A\ge\left|3x-2\right|+\left|2x+\dfrac{10}{3}\right|+\dfrac{1}{2}\left|2x+\dfrac{10}{3}\right|+5x+2\)
\(A\ge\left|5x+\dfrac{4}{3}\right|+5x+\dfrac{4}{3}+\dfrac{1}{2}\left|2x+\dfrac{10}{3}\right|+\dfrac{2}{3}\ge\dfrac{2}{3}\)
\(A_{min}=\dfrac{2}{3}\) khi \(2x+\dfrac{10}{3}=0\Rightarrow x=-\dfrac{5}{3}\)
b. Tương tự
\(B\ge\left|5x+7\right|+\left|x+\dfrac{5}{4}\right|+3\left|x+\dfrac{5}{4}\right|-6x+5\)
\(B\ge\left|6x+\dfrac{33}{4}\right|-\left(6x+\dfrac{33}{4}\right)+3\left|x+\dfrac{5}{4}\right|+\dfrac{53}{4}\ge\dfrac{53}{4}\)
\(B_{min}=\dfrac{53}{4}\) khi \(x=-\dfrac{5}{4}\)
Lời giải:
a. Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
\(A=|-x-3|+|4x+1|+|3x+5|+5x+2\)
\(\geq |-x-3+4x+1|+|3x+5|+5x+2=|3x-2|+|3x+5|+5x+2\)
Nếu $x\geq \frac{2}{3}$ thì:
$A\geq 3x-2+3x+5+5x+2=11x+5\geq 11.\frac{2}{3}+5=\frac{37}{3}$
Nếu $\frac{-5}{3}\leq x< \frac{2}{3}$ thì:
$A\geq 2-3x+3x+5+5x+2=9+5x\geq 9+5.\frac{-5}{3}=\frac{2}{3}$
Nếu $x< \frac{-5}{3}$ thì:
$A\geq 2-3x-3x-5+5x+2=-1-x>\frac{2}{3}$
Từ 3 TH trên suy ra $A_{\min}=\frac{2}{3}$ khi $x=\frac{-5}{3}$
Ta có : \(x^4\ge0\forall x\)và \(3\left|x\right|\ge0\forall x\)
\(\Rightarrow x^4+3\left|x\right|+2\ge2\forall x\)
hay \(A\ge2\)
Dấu "=" xảy ra <=> x = 0
Vậy, A min = 2 khi và chỉ khi x = 0
\(B=\left(x^4+5\right)^2\)
Có \(\left(x^4+5\right)^2\ge0\)
Dấu "=" xảy ra khi \(x^4=-5\)
Vậy Min B = 0 <=>