CMR \(x^2-5xy+z^2+10y^2+2>0\forall x,y,z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bđt : \(\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(m+p\right)^2}{n+q}\)\(\left(m,n,p,q>0\right)\)(1)
Thật vậy \(\left(1\right)\Leftrightarrow\frac{m^2q+p^2n}{nq}\ge\frac{\left(m+p\right)^2}{n+q}\)
\(\Leftrightarrow m^2n\left(n+q\right)+p^2n\left(n+q\right)\ge nq\left(m+p\right)^2\)
\(\Leftrightarrow............\)(Phá tung ra + chuyển vế)
\(\Leftrightarrow\left(mq-pn\right)^2\ge0\)(Luôn đúng)
Áp dụng (1) ta được
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(ĐPCM)
Dấu "=" khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
P/S: nếu hỏi tại sao chỗ bđt phụ lại đặt m,n,p,q khó nhìn thì hãy bảo tại cái đề bài đã có a,b,x,y rồi -.-
Áp dụng BĐT Bunhiacopxki:
\(\left[\left(\frac{x}{\sqrt{a}}\right)^2+\left(\frac{y}{\sqrt{b}}\right)^2+\left(\frac{z}{\sqrt{c}}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\)\(\ge\left(x+y+z\right)^2\)
Hay \(\left(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\right)\left(a+b+c\right)\ge\left(x+y+z\right)^2\)
Chia hai vế của BĐT cho (a + b + c),ta có đpcm: \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)
Ta có:
\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)
\(VT\ge2\left(x+y+z\right)+2y+4x\)
\(VT\ge2\left(3x+2y+z\right)\ge4\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
A=4x(x+y)(x+z)(x+y+z)+y2z2
A=4x(x+y+z)(x+y)(x+z)+y2z2
A=(4x2+4xy+4xz)(x2+xz+xy+yz) +y2z2
A=4(x2+yx+xz)(x2+yz+xz+yz)+y2z2
đặt x2+yz+z=a
=>A=4a(a+yz)+y2z2
A=4a2+4ayz+y2z2
A=(2a+yz)2
MÀ (2a+yz)2\(\ge\)0
=>A \(\ge\)0 với mọi x,y,z thuộc R
Áp dụng bất đẳng thức cosi schwarz
\(A\ge\frac{\left(x+y+z\right)^2}{2x^2+2y^2+2z^2+5\left(xy+yz+xz\right)}=\frac{9}{18+\left(xy+yz+xz\right)}\)
Mà \(xy+yz+xz\le\frac{1}{3}\left(x+y+z\right)^2=3\)
=> \(A\ge\frac{9}{18+3}=\frac{3}{7}\)
MinA=3/7
Dấu bằng xảy ra khi x=y=z=1
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{5}{2}y+\dfrac{25}{4}y^2+\dfrac{15}{4}y^2+z^2+2\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}y^2+z^2+2>=2>0\)