a) Lập bảng giá trị của 2n với n ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10};
b) Viết dưới dạng lũy thừa của 2 các số sau: 8; 256; 1 024; 2 048.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trước khi $a$ là số nguyên tố thì $a$ cần là số nguyên.
Để $a$ nguyên thì với $n\in\mathbb{N}$, ta có:
$n+8\vdots 2n-5$
$\Rightarrow 2(n+8)\vdots 2n-5$
$\Rightarrow (2n-5)+21\vdots 2n-5$
$\Rightarrow 21\vdots 2n-5$
$\Rightarrow 2n-5\in\left\{\pm 1; \pm 3; \pm 7; \pm 21\right\}$
$\Rightarrow n\in \left\{3; 2; 4; 1; 6; -1; 13; -8\right\}$
Do $n$ tự nhiên nên $n\in \left\{3; 2; 4; 1; 6; 13\right\}$
Thử lần lượt các giá trị $n$ vào $a$ ta được:
$n\in\left\{3; 6\right\}$ thỏa mãn
a) Thay x=1 vào hàm số y=2x-1, ta được:
\(y=2\cdot1-1=2-1=2\)
Thay x=-1 vào hàm số y=2x-1, ta được:
\(y=2\cdot\left(-1\right)-1=-2-1=-3\)
Thay x=0 vào hàm số y=2x-1, ta được:
\(y=2\cdot0-1=-1\)
Thay x=2 vào hàm số y=2x-1, ta được:
\(y=2\cdot2-1=4-1=3\)
Vậy: F(1)=2; F(-1)=-3; F(0)=-1; F(2)=3
b)
x 1 -1 0 2 y=2x-1 2 -3 -1 3
b, Để a nguyên hay \(2n+2⋮2n-4\Leftrightarrow2n-4+6⋮2n-4\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
Giải:
a) Để A=2n+2/2n-4 là phân số thì n ∉ {-1;1;2;3;5}
b) Để A là số nguyên thì 2n+2 ⋮ 2n-4
2n+2 ⋮ 2n-4
=>(2n-4)+6 ⋮ 2n-4
=>6 ⋮ 2n-4
=>2n-4 ∈ Ư(6)={-1;1;2;-2;3;-3;6;-6}
Vì 2n-4 là số chẵn nên 2n-4 ∈ {2;-2;6;-6}
Ta có bảng giá trị:
+)2n-4=2
n=3
+)2n-4=-2
n=1
+)2n-4=6
n=5
+)2n-4=-6
n=-1
Vậy n ∈ {-1;1;3;5}
Chúc bạn học tốt!
a, Ta có bảng sau :
b) Từ bảng trên ta thấy:
+) 8 = 2\(^3\); 256 = 2\(^8\) ; 1 024 = 2\(^{10}\);
+) 2 048 = 2. 1 024 = 2\(^1\).2\(^{10}\) = 2\(^{1+10}\) = 2\(^{11}\)