K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(-x^2+x-\dfrac{1}{2}\)

\(=-\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)

15 tháng 6 2018

các bạn ơi giúp mk vs

15 tháng 6 2018

Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(x+y\)\(2\sqrt{xy}\)

\(\left(x+y\right)^2\)\(4xy\)

\(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy

⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)

CMTT , \(16xy+\dfrac{1}{xy}\)\(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)

\(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)

8 tháng 8 2017

\(0< x< \dfrac{1}{2}\) áp dụng BĐT Cauchy-Schwarz dạng Engel

\(\dfrac{1}{x}+\dfrac{2}{1-2x}=\dfrac{2}{2x}+\dfrac{2}{1-2x}=2\left(\dfrac{1}{2x}+\dfrac{1}{1-2x}\right)\)

\(\ge2.\dfrac{\left(1+1\right)^2}{2x+1-2x}=\dfrac{2.4}{1}=8\)

Đẳng thức xảy ra \(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{1-2x}\Leftrightarrow x=\dfrac{1}{4}\)

26 tháng 5 2017

a) \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x^3}+1}+\dfrac{2}{x-\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{2}{x-\sqrt{x}+1}\)

\(A=\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{2\left(\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)

b) Chứng minh \(A\ge0\)

Ta có \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}}{\sqrt{x^2}-2\sqrt{x}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)\(\sqrt{x}\ge0\)

\(\Rightarrow A=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge0\) (1)

Chứng minh \(A\le1\)

Ta có \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\)

\(\Leftrightarrow\sqrt{x}\le x-\sqrt{x}+1\)

\(\Leftrightarrow2\sqrt{x}\le x+1\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow x+1\ge2\sqrt{x}\) ( luôn đúng với mọi \(x\ge0\) )

Vậy \(A\le1\) (2)

Từ (1) và (2)

\(\Rightarrow0\le A\le1\) ( đpcm )

16 tháng 9 2018

điều kiện xác định : \(x\ge0;x\ne1\)

a) ta có : \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(\Leftrightarrow P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) \(x>0\Rightarrow-\sqrt{x}< 0\)\(x< 1\Rightarrow\sqrt{x}-1< 0\)

\(\Rightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\) (đpcm)

c) ta có : \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(\Rightarrow P_{max}=\dfrac{1}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

vậy GTLN của \(P\)\(\dfrac{1}{4}\) khi \(x=\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

câu này đâu khó bn,suy nghĩ kỉ lm là đc mak

21 tháng 10 2017

hỏi rk mà cx hỏi!

14 tháng 8 2017

cau a) =\((\dfrac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}-\dfrac{\sqrt{x}+2}{(\sqrt{x}+1)^{2}})\)x\(\dfrac{(\sqrt{x}-1)^{2}}{2} \)

=\(\dfrac{(\sqrt{x}-2)(\sqrt{x}+1)-(\sqrt{x}+2)(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)^{2}}\)x\(\dfrac{(\sqrt{x}-1)^{2}}{2} \)

=\(\dfrac{-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)^{2}}\)x\(\dfrac{(\sqrt{x}-1)^{2}}{2} \)

=\(\dfrac{-(\sqrt{x})(\sqrt{x}-1)}{(\sqrt{x}+1)^{2}}\)

14 tháng 8 2017

cau b)

do x<1 => \(\sqrt{x}\)<1 => \(\sqrt{x} -1 <0\)

=> \(-(\sqrt{x})(\sqrt{x}-1)>0\)

mẫu số chắc chắn lớn hơn 0 rồi

nên A>0

có j k hỉu ib hỏi mình nha