1 Chứng minh rằng :
a. A = ( \(1+3+3^2+...+3^{11}\)) chia hết cho 4
b. B = ( \(16^5+2^{^{15}}\)) chia hết cho 33
c.C = ( \(10^{28}+8\)) chia hết cho 72
d. D = (\(8^8+2^{20}\)) chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1+2+2^2+...+2^7\right)\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)
\(=3+2^2.3+...+2^6.3\)
\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)
a) Đặt A = 1 + 2 + 22 + 23 + ... + 27
Ta có:
A = 1 + 2 + 22 + 23 + ... + 27
\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28
\(\Rightarrow\)A = 28 - 1 = 255
Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3
\(\Rightarrow\)ĐPCM
a) A = 1 + 3 + 32 + .... + 311
= (1+3+32 ) + ( 33 + 34 + 35) + ..... + (39 + 310 + 311)
= 13 + 33 . 13 + .... + 39 . 13
= 13 . (1+ 33 +....+ 39)
=> A chia hết cho 13
b) B = 165 + 215
= 220 +215
= 215 . 25 + 215
= 215 . ( 25 + 1)
= 215 .33
=> B chia hết cho 33
c) C= 5 + 52 + 53 + .....+ 58
= (5 + 52) + (53 + 54) +....+ ( 57 + 58)
= 30 + 52 (5 + 52) + ....+ 56 ( 5 + 52)
= 30 + 52 . 30 + .....+ 56 . 30
= 30. ( 1+ 52 +....+ 56 )
=> C chia hết cho 30
d) D= 45 + 99+ 180 chia hết cho 9
Do 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
=> 45 + 99 + 180 chia hết cho 9
e) E = 1+ 3 + 32 + 33 + ......+ 3199
= (1+3+32) + (33 + 34 + 35) +......+ (3197 + 3198 + 3199)
= 13 + 33 (1+3+32) +.......+ 3197(1+3+32)
= 13 + 33 . 13 + ..... + 3197 .13
= 13. ( 1+ 33 +....+ 3197)
=> E chia hết cho 13
f)
Ta có: 1028 + 8 = 100...08 (27 chữ số 0)
Xét 008 chia hết cho 8 => 1028 + 8 chia hết cho 8 (1)
Mà 1+27.0+ 8 = 9 chia hết cho 9 => 1028 + 8 chia hết cho 9 (2)
Mà (8,9) =1 (3)
Từ (1); (2); (3) => 1028 + 8 chia hết cho (8.9)= 72
g)
ta có: G= 88 + 220 = (23)8 + 220 = 224 + 220 = 220 . 24 + 220 = 220 . (24 + 1) = 220 . 17
=> G chia hết cho 17
a) A = 1 + 3 + 3^2 + ... + 3^11
A = ( 1 + 3 + 3^2 ) + ... + ( 3^9 + 3^10 + 3^11 )
A = 1(1 + 3 + 3^2 ) + ... + 3^9 ( 1 + 3 + 3^2 )
A = 1 . 13 + ... + 3^9 . 13
A = 13 ( 1 + ... + 3^9 ) chia hết cho 13
còn mấy ý kia bạn chỉ cần tách nhóm rồi làm tương tự là ok
Good luck
c) C = 5 + 52 + 53 +...+ 58
= ( 5 + 52 ) + ( 53 + 54 ) + ( 55 + 56 ) + ( 57 + 58 )
= 5 + 52 + 52( 5 + 52 ) + 54( 5 + 52 ) + 56( 5 + 52 )
= 5 + 52 ( 1 + 52 + 54 + 56 )
= 30. ( 1 + 52 + 54 + 56 ) chia hết cho 30
Vậy C = 5 + 52 + 53 +...+ 58 chia hết cho 30
b) B = 165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215(25 + 1)
= 215.33 chia hết cho 33
Vậy B = 165 + 215 chia hết cho 33
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
A= 1+3+3^2+3^3+...+3^11
=(1+3)+(3^2+3^3)+...+(3^10+3^11)
=4+3^2(4)+...+3^10(4)
=4(1+3^2+...+3^10)
a) A= (1+3)+(3^2+3^3)+.....+ ( 3^10 + 3^11)
A= 1. ( 1+ 3) + 3^2. ( 1+ 3) +.....+ 3^10. (1+3)
A= 1.4+3^2.4+...+3^10.4
A= 4. ( 1+ 3^2+...+ 3^10) chia hết cho 4
Vậy A chia hết cho 4
b) B= (2^4)^5 + 2^15
B= 2^ 20+ 2^15
B= 2^15.2^5+2^15
B= 2^15. (2^5 +1)
B= 2^15.33 chia hết cho 33
Vậy B chia hết cho 33
c) C= 5+5^2+5^3+....+5^8 chia hết cho 5 (1)
C= 5+ 5^2 +5^3+.....+5^8
C= (5+5^2)+(5^3+5^4)+...+(5^7+5^8)
C= 5. (1+5) + 5^3. (1+5) +....+ 5^7.(1+5)
C= 5.6+5^3.6+...+5^7.6 chia hết cho 6
mà 5 và 6 là hai số nguyên tố cùng nhau
suy ra C chia hết cho 30
Vậy C chia hết cho 30
d) 5.9+11.9+9.20= 9. (5+11+20) chia hết cho 9
Vậy D chia hết cho 9
e) E= (1+3+ 3^2) + (3^3+3^4+3^5) +....+ (3^117+3^118+3^119)
E= 1.(1+3+3^2) + 3^3.(1+3+3^2) +....+ 3^117.(1+3+3^2)
E= 1.13+3^3.13+...+ 3^117.13
E= 13. ( 1+3^3+...+3^117) chia hết cho 13
Vậy E chia hết cho 13
f) Ta có: 10^28= 100.....000 ( có 28 chữ số 0)
thay 100...00 vào 10^28 ta được:
1000....00+8= 1000...008 chia hết cho 3 và 9 vì tổng các chữ số của 100...008 bằng 9
mà 3 và 9 là hai số nguyên tố cùng nhau
suy ra F chia hết cho 27
Vậy F chia hết cho 27
g) G= (2^3)^8 + 2^20
G= 2^24 + 2^20
G= 2^20 . 2^4 + 2^20
G= 2^20. (2^4+1)
G= 2^20. 17 chia hết cho 17
Vậy G chia hết cho 17
Nếu các bạn thầy hay thì (k) đúng cho mình nhé! thank you very much
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)