Có 5 đấu thủ thi đấu cờ mỗi người đấu 1 trận với đối thủ khác. CMR trong suốt thời gian thi đấu luôn tồn tại 2 đấu thủ có số trận đấu bằng nhau .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số trận đã đấu của mỗi người có thể là 0, 1, 2, 3, 4. Nhưng vì không thể có cùng lúc một người đã đấu 4 trận và một người chưa đấu trận nào
=> có tối đa 4 loại số trận đã đấu.
Vận dụng nguyên lý chuồng bồ câu ta có ít nhất có 2 người có cùng số trận đã đấu.
Ta có số trận đã đấu của mỗi người có thể là 0,1,2,3,4. Nhưng vì không thể có cùng lúc một người đã đấu 4 ván và một người chưa đấu trận nào.
\(\Rightarrow\)Có tối đa 4 loại số trận đã đấu.
\(\rightarrow\)Theo nguyên lí Direcle tồn tại 2 dối thủ có số trận bằng nhau trong thời gian thi đấu.
Ta có số trận đã đấu của mỗi người có thể là 0, 1, 2, 3, 4. Nhưng vì không thể có cùng lúc một người đã đấu 4 trận và một người chưa đấu trận nào
=> có tối đa 4 loại số trận đã đấu.
Vận dụng nguyên lý chuồng bồ câu ta có ít nhất có 2 người có cùng số trận đã đấu.
Có 6 vận động viên cùng đấu ,còn vận động viên còn lại đấu 1 trong 6 người còn lại .Vậy là ai cũng có 1 trận.
Nếu như là 2 trận trở lên thì 1 người phải thi với 2 người trong số họ .
3,4 ,5,6 thì cũng vậy .
Do đó ,trong suốt thời gian thi đấu thì luôn tồn tai 2 vận động viên có số trận như nhau.
Mỗi trận đấu dù kết quả thế nào thì số điểm mà cả 2 người nhận được là 2 điểm
Có 8 đầu thú,mỗi đấu thủ thi đấu 1 trận với 1 đầu thu khác.Do đó tổng số vấn đầu là:8.7:2=28 ván đấu
Tổng số điểm theo đó sẽ là 28.2=56 điểm
đầu thu xếp cuối cùng tháng đầu thứ hạng nhất và hòa với hai đấu thủ hạng nhì và ba do đó đầu thu này có tối thiểu 3 điểm
Vì 8 đấu thủ đều có số điểm khác nhau nên tổng số điểm tối thiểu mà 8 đầu thu này cô sẽ là :3+4+5+6+7+8+9+10=72 điểm lớn hơn số điểm tổng ở trên là 56 điểm suy ra vô lí
Vậy Tí đã sai
Giả sử tồn tại thời điểm mà không có hai kì thủ nào có số trận đấu bằng nhau, khi đó số trận đấu của các kì thủ là:
\(0,1,2,3,...,9\).
Khi đó có kì thủ đã đấu với cả \(9\)kì thủ còn lại, giả sử đó là \(A_1\)đã đấu với \(A_2,A_3,...,A_{10}\), nhưng lại có kì thủ chưa đấu với kì thủ \(A_1\)(mâu thuẫn).
Do đó ta có đpcm.
Ta có số trận đã đấu của mỗi người có thể là 0, 1, 2, 3, 4. Nhưng vì không thể có cùng lúc một người đã đấu 4 trận và một người chưa đấu trận nào
=> có tối đa 4 loại số trận đã đấu.
Vận dụng nguyên lý chuồng bồ câu ta có ít nhất có 2 người có cùng số trận đã đấu.
Ta có số trận đã đấu của mỗi người có thể là 0, 1, 2, 3, 4. Nhưng vì không thể có cùng lúc một người đã đấu 4 trận và một người chưa đấu trận nào
=> có tối đa 4 loại số trận đã đấu.
...............