Cho tam giác ABC vuông tại A. Đường trung trực của AB cắt AB tại M và cắt BC tại N. Chứng minh NA=NB. Từ N vẽ NH vuông góc AC. Chứng minh NH vuông góc MN và NH=AM. Chứng minh MH song song BC và MH=1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tứ giác AKHM có
∠AHM= ∠AKM =∠HAK ( =90 )
⇒ tứ giác AKHM là hình chữ nhật
b)Ta có tam giác ABC có M trug điểm BC
NH vuông góc vs AB=> MH// AC và MH =1/2 AC
Cmtt K là trung điểm AC
=> HK là đg tb của tam giác ABC=> HK//B M Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành
c)Ta có EF là đường tb tam giác MHK
=> EF//HK
EF// HK và EF=1/2 HK
GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM
EF= HO= KO
Mà HO= HI+IO
=> KO=JO+KJ
Mà IO= JO=> HI= KJ
d) Dễ thấy EF =1/3 AB= 4 căn 3 /3
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó:ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
c: Xét ΔMCE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔMCE cân tại C
mà CA là đường cao
nên CA là tia phân giác của góc MCE
a) Vì AB // CN (gt)
=> AE //NC
=> EB//NC
=> MCN = EBM (so le trong)
Xét ∆EBM và ∆MCN ta có :
BM = MC (M là trung điểm BC )
BME = NMC ( đối đỉnh)
MCN = EBM (cmt)
=> ∆EBM = ∆MCN (g.c.g)(dpcm)