K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

* Phân tích

Giả sử điểm M thuộc xy đã tìm được để có MA+ MB là ngắn nhất.

Lấy A’ đối xứng với A qua xy

ta có: MA = MA’

suy ra MA’ + MB cũng ngắn nhất .

Mà A và B lại nằm trên hai nửa mặt phẳng đối nhau có bờ là đường thẳng xy

Nên M phải nằm giữa A’và B tức là MA’ + MB = A’B

Suy ra M phải là giao của A’B và xy.

* Cách dựng

Dựng A’ đối xứng với A qua xy,

Nối A’với B cắt xy tại điểm M

*Chứng minh :

Nối M với A ta có MA = MA’ (A và A’ đối xứng với nhau qua xy)

Mà MA’ + MB = A’B

suy ra MA+MB =A’B là ngắn nhất

Thật vậy: nếu lấy một điểm M’ thuộc xy mà M’ khác M ,

nối M’ với A’ và M’ với B

ta có tam giác M’A’B.

Do đó M’A’ + M’B > A’B

mà M’A’ = M’A’(tính chất đối xứng).

20 tháng 4 2016

)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

8 tháng 8 2021

Do E là điểm bất kì trên AB, mà E đối xứng với F qua O => F nằm trên DC⇒ D,F,C thẳng hàng