Tìm N . Biết
a, -6n-2chia hết (n-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 5n+2\(⋮\)9-2n
<=> 2(5n+2)\(⋮\)9-2n
<=> 10n+4\(⋮\)9-2n
<=> 10n-45+49\(⋮\)9-2n
<=> 49-(45-10n)\(⋮\)9-2n
<=> 49-5(9-2n)\(⋮\)9-2n
<=> 49\(⋮\)9-2n => 9-2n=(-49,-7,-1,1,7,49)
9-2n | -49 | -7 | -1 | 1 | 7 | 49 |
n | 29 | 8 | 5 | 4 | 1 | -20 (loại) |
ĐS: n=(1,4,5,8,29)
b/ Làm tương tự
a,5n+2 chia hết cho 9-2n
=>2(5n+2)+5(9-2n) chia hết cho 9-2n
=>10n+4+45-10n chia hết cho 9-2n
=>49 chia hết cho 9-2n
=>9-2n E Ư(49)={1;-1;7;-7;49;-49}
=>2n E {8;10;2;-16;-40;58}
=>n E {4;5;1;-8;-20;29}
Mà n là stn
=>n E {4;5;1;29}
b, 6n+9 chia hết cho 4n-1
=>2(6n+9)-3(4n-1) chia hết cho 4n-1
=>12n+18-12n+3 chia hết cho 4n-1
=>21 chia hết cho 4n-1
=>4n-1 E Ư(21)={1;-1;3;-3;7;-7;21;-21}
=>4n E {2;0;4;-2;8;-6;22;-20}
=>n E {1/2;0;1;-1/2;2;-3/2;11/2;-5}
Mà n là stn
=> n E {0;1}
3n + 2 \(⋮\) n - 1 <=> 3(n - 1) + 5 \(⋮\) n - 1
=> 5 \(⋮\) n - 1 (vì 3(n - 1) \(⋮\) n - 1)
=> n - 1 ∈ Ư(5) = {1; 5}
n - 1 = 1 => n = 2
n - 1 = 5 => n = 6
Vậy n ∈ {2; 6}
4n2+n+2=4n2+4n-3n-3+5=4n(n+1)-3(n+1)+5=(n+1)(4n-3)+5
Nhận thấy: (n+1)(4n-3) luôn chia hết cho n+1 với mọi n
=> Để 4n2+n+2 chia hết cho n+1 => 5 phải chia hết cho n+1
=> n+1=(1;5) => n=(0,4)
Đáp số: n=(0,4)
Bài 3:
a: Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=4\cdot2n=8n⋮8\)
b: Ta có: \(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)
\(=12\cdot\left(2n+2\right)\)
\(=24\left(n+1\right)⋮24\)
ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)=\(n-1+\frac{3}{2n+1}\)
để 2n^2 -n+2 chia hết cho 2n+1 thì 3 phải chia hết cho 2n+1 <=> 2n+1 thuộc các ước nguyên của 3
Ư(3)={-3;-1;1;3)
ta có bảng:
2n+1 | -3 | -1 | 1 | 3 |
n | -2 | -1 | 0 | 1 |
Vậy với x={-2;-1;0;1) thì 2n^2-n+2 chia hết cho 2n+1
Ta có:
\(\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=\frac{n-3}{n-3}+\frac{5}{n-3}=1+\frac{5}{n-3}\)
Suy ra n-3\(\in\)Ư(5)
Ư(5)là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Vậy n=4;2;8;-2
n + 2 ⋮ n - 3 <=> ( n - 3 ) + 5 ⋮ n - 3
Vì n - 3 ⋮ n - 3 . Để ( n - 3 ) + 5 ⋮ n - 3 thì 5 ⋮ n - 3 => n - 3 ∈ Ư ( 5 ) = { + 1 ; + 5 }
Ta có : n - 3 = 1 => n = 1 + 3 = 4 ( nhận )
n - 3 = - 1 => n = - 1 + 3 = 2 ( nhận )
n - 3 = 5 => n = 5 + 3 = 8 ( nhận )
n - 3 = - 5 => n = - 5 + 3 = - 2 ( nhận )
Vậy n ∈ { + 2 ; 4 ; 8 }
\(\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\) => \(n-3\inƯ\left(5\right)\)=> \(n-3\in\left\{\pm1;\pm5\right\}\)
=> \(n\in\left\{4;2;8;-2\right\}\)
Cần chứng minh: -6n-2=-6n+6-8=-6(n-1)-8 chia hết cho (n-1)
Mà -6(n-1) luôn chia hết cho (n-1)
Nên 8 phải chia hết cho (n-1)
(Xét các ước của 8 để tìm n nha)