Cho đường tròn (O) nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC, CA lần lượt tại
M, N, P. OA cắt MP tại E, OB cắt MN tại F, OC cắt NP tại G. Chứng minh rằng O là trực tâm
tam giác EFG.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1). Gọi AD cắt (O) tại P khác A
Ta có P C M ^ = P A C ^ (góc tạo bởi tiếp tuyến và dây cung) = P E M ^ (góc đồng vị do E M ∥ A C );
Suy ra tứ giác ECMP nội tiếp. Từ đó suy ra M P C ^ = M E C ^ = E C A ^ = C A P ^ ⇒ PM tiếp xúc (O)
Tương tự PN tiếp xúc (O), suy ra MN tiếp xúc (O) tại P.
2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).
Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P (2).
Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra C P = B P ⇒ A D là phân giác góc B A C ^ .
a) Dễ thấy: ^CMN = 900 - ^ACB/2; ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ
=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)
Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)
Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).
b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC
=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB
Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).
c) Sửa điểm E thành điểm R cho đỡ trùng.
+) C/m : ^BAC = 900 => AR = AC ?
Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB
Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:
\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).
+) C/m : AR = AD => ^BAC = 900 ?
Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)
=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông góc AC hay ^BAC = 900 (đpcm).
d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)
\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\)
\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)
\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)
Vậy hệ thức cần chứng minh là đúng => ĐPCM.
Gọi AD là phân giác của tam giác ABC . Do B,C đối xứng nhau qua OT và BM=CN nên M,N đối xứng qua OT
=>\(BC//MN\)
Ta có \(\widehat{FBM}=180^0-\widehat{ABC}-\widehat{CBM}=180^0-\widehat{ABC}-\widehat{CAB}=\widehat{ACB}\)
chú ý góc đồng .vị \(\widehat{ABC}=\widehat{BFM}\)do đó \(\Delta ABC~\Delta MFB\). từ đó ta chú ý \(FM//BC\)nên theo định lý ta-lét ta có
\(\frac{QC}{QF}=\frac{BC}{FM}=\frac{BM}{FM}=\frac{AC}{AB}=\frac{DC}{DB}\)suy ra \(QD//BF\). tương tự \(PD//CE\)
từ đó theo định lý ta-lét .và tính chất đường phân giác ta có
\(\frac{DQ}{DP}=\frac{DQ}{BF}.\frac{BF}{CE}.\frac{CE}{DP}=\frac{CD}{BC}.\frac{AB}{AC}.\frac{BC}{BD}=\frac{CD}{BD}.\frac{AB}{AC}=1\).vậy DP=DQ (1)
ta lại có \(\widehat{ADQ}=\widehat{DBQ}+\widehat{BDQ}=\widehat{\frac{BAC}{2}+}\widehat{ACB}+\widehat{ABC}.\)
.vậy tương tự \(\widehat{ADP}=\frac{\widehat{BAC}}{2}+\widehat{ACB}+\widehat{ABC}\)do đó
\(\widehat{ADQ}=\widehat{ADP}\left(2\right)\)
Từ (1) zà (2) suy ra
\(\Delta ADQ=\Delta ADP\left(c.g.c\right)\)suy ra \(AP=AQ\)(dpcm)