Cho tứ giác lồi 4 cạnh a, b, c, d đều là các số nguyên dương. CMR nếu độ dài mỗi cạnh đều là các ước số của chu vi tứ giác này thì tứ giác đó có ít nhất hai cạnh bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài giải
cạnh của hình tứ giác đó là:
20:4=5 (m)
đáp số:5 m
mk nha
Giả sử tứ giác ABCD có AD = a, AB = b, BC = c, CD = d không có hai cạnh nào bằng nhau. Ta có thể giả sử a < b < c < d.
Ta có a + b + c > BD + c > d.
Do đó a + b + c + d > 2d hay S > 2d (*)
Ta có: S\(⋮\)a => S = m.a (m\(\in\)N) (1)
S\(⋮\)b => S = n.b (n\(\in\)N) (2)
S\(⋮\)c => S = p.d (p\(\in\)N) (3)
S\(⋮\)d => S = q.d (q\(\in\)N) (4) . Từ (4) và (*) suy ra q.d > 2d => q > 2
Vì a < b < c < d (theo giả sử) nên từ (1), (2), (3) và (4) suy ra m > n > p > q > 2
Do đó q\(\ge\)3; p\(\ge\)4; n\(\ge\)5; m\(\ge\)6
Từ (1), (2), (3), (4) suy ra 1/m = a/S; 1/n = b/S; 1/p = c/S; 1/q = d/S
Ta có: \(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\ge\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}=\frac{a+b+c+d}{S}=1\)
hay \(\frac{19}{20}\ge1\)(vô lí)
Vậy tồn tại hai cạnh của tứ giác bằng nhau (đpcm)
...
bạn giải giúp mình với ạ. Mình đang cần giải gấp