Chứng tỏ : n7 - 14n5 + 49n3 - 36n chia hết cho 210
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=2+2^2+2^3+...+2^{10}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^9+2^{10}\right)\)
\(\Leftrightarrow A=6+2^2\left(2+2^2\right)+..+2^8\left(2+2^2\right)\)
\(\Leftrightarrow A=6+2^2.6+...+2^8.6\)
\(\Leftrightarrow A=6\left(1+2^2+...+2^8\right)\)
Vì \(6⋮3\)
\(\Rightarrow A=6\left(1+2^2+..+2^8\right)⋮3\)
Vậy \(A⋮3\)
hok tốt !!!
36n2+60n+24=12(3n2+5n+2)=12(3n2+3n+2n+2)
=12[3n(n+1)+2(n+1)]=12(n+1)(3n+2)
Ta nhận thấy: n+1 và 3n+2 khác tính chẵn lẻ
Nên 2 số luôn có 1 số là chẵn => (n+1)(3n+2) luôn chia hết cho 2
=> 12(n+1)(3n+2) luôn chia hết cho 12x2=24 với mọi n.
=> đpcm
Ta có:36n2+60n+24=n(36n+60)+24
=n(12(3n+5n))++24
=n(12.8n)+24
=96n2+24
=24(4n2+1) chia hết cho 24
Vậy 36n2+60n+24 chia hết cho 24 với mọi n
Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.
+ Qua ví dụ 1 rút ra cách làm như sau:
Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).
n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho 4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả
M=n^3(n^2−7)^2−36n
n[n^2(n^2−7)^2−36]
= n.[(n^3−7n)^2−6^2]
= n(n^3−7n−6)(n^3−7n+6)
=(n−3)(x−2)(n−1)n(n+1)(n+2)(n+3)
M luôn chia hết cho 2;3;5. Các số này đôi 1 nguyên tố cùng nhau => B chia hết cho 105
\(P=n^3\left(n^2-7\right)^2-36\)
\(P=n\left[n\left(n^27\right)^2-36\right]\)
\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.