K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Ta sẽ chứng minh: \(\sqrt{\frac{x^4+1}{2}}+\frac{4x^2}{x^2+1}\ge3x\)

Thật vậy: \(\Leftrightarrow\left(\sqrt{\frac{x^4+1}{2}}-x\right)+2\left(\frac{2x^2}{x^2+1}-x\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}+2x}-\frac{2x}{x^2+1}\right]\ge0\)

Bây giờ ta quy về chứng minh: \(\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}}\ge\frac{2x}{x^2+1}\Leftrightarrow\left(x^2+1\right)\left(x+1\right)^2\ge4x\left(\sqrt{\frac{x^4+1}{2}+x}\right)\)

\(\Leftrightarrow x^4+1+2x^3+2x\ge2x^2+4x\sqrt{\frac{x^4+1}{2}}\)

\(\Leftrightarrow\frac{x^4+1}{2}+x^3+x\ge x^2+2x\sqrt{\frac{x^4+1}{2}}\)

Bất đẳng thức trên đúng theo AM - GM:

\(\frac{x^4+1}{2}+x^3+x\ge\left(\frac{x^4+1}{2}+x^2\right)+x^2\ge2x\sqrt{\frac{x^4+1}{2}}+x^2\)

Vậy hoàn tất chứng minh trên nên ta có:

\(\sqrt{\frac{a^2+1}{2}}+\frac{4a}{a+1}\ge3\sqrt{a}\);\(\sqrt{\frac{b^2+1}{2}}+\frac{4b}{b+1}\ge3\sqrt{b}\)

\(\sqrt{\frac{c^2+1}{2}}+\frac{4c}{c+1}\ge3\sqrt{c}\)\(\sqrt{\frac{d^2+1}{2}}+\frac{4c}{d+1}\ge3\sqrt{d}\)

Cộng từng vế của các bđt trên. ta được: \(\text{Σ}_{cyc}\sqrt{\frac{a^2+1}{2}}\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\)

\(-4\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\right)\)\(=3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)-8\)

Dấu "=" xảy ra khi a = b = c = 1 

8 tháng 3 2020

Hỏi đáp Toán

Hỏi đáp Toán

Chúc bạn học tốt !!

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

NV
25 tháng 10 2019

\(a+b+c=\frac{1}{abc}\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sum\frac{1}{\sqrt{1+\frac{1}{x^2}}}=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{x^2+xy+yz+zx}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)

NV
8 tháng 6 2020

Đề bài sai, giả sử \(a=0;b=-1;c=4\) thì biểu thức ko xác định

Do đó điều kiện phải là a;b;c là số thực dương

\(\Leftrightarrow\frac{1}{a}-\frac{2}{\sqrt{a}}+1+\frac{1}{b}-\frac{2}{\sqrt{b}}+1+\frac{1}{c}-\frac{2}{\sqrt{c}}+1\ge0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{a}}-1\right)^2+\left(\frac{1}{\sqrt{b}}-1\right)^2+\left(\frac{1}{\sqrt{c}}-1\right)^2\ge0\) (luôn đúng)

Vậy BĐT ban đầu đúng

Dấu "=" xảy ra khi \(a=b=c=1\)

Điều kiện \(a+b+c=3\) thừa ko biết để làm gì :)

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0