Tính:
(/x/-\(\dfrac{1}{8}\)).(\(\dfrac{-1}{5}\))5=(-\(\dfrac{1}{8}\))7
Làm ơn giúp mn nha!!! ✔
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1200-31/40=47969/40
câu 2 =45/56+25/56=(45+25)/56=70/56=5/4
\(a,\dfrac{x}{7}=\dfrac{6}{12}\\ x\cdot12=7\cdot6=42\\ x=42:12\\ x=\dfrac{7}{2}\\ b,\dfrac{-5}{x}=\dfrac{20}{28}\\ x\cdot20=\left(-5\right)\cdot28=-140\\ x=\left(-140\right):20\\ x=-7\\ c,\dfrac{x-2}{8}=\dfrac{3}{4}\\ \left(x-2\right)4=8\cdot3=24\\ x-2=24:4\\ x-2=6\\ x=6+2\\ x=8\\ d,\dfrac{x}{-5}=\dfrac{-5}{x}\\ x^2=\left(-5\right)\cdot\left(-5\right)=25\\ x=5\)
\(\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
\(=\dfrac{3\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}{5\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}+\dfrac{2(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{8})}{5\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{8}\right)}\)
\(=\dfrac{3}{5}+\dfrac{2}{5}\)
\(=1\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)
Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)
Lấy (4) trừ (3) ta có:
\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)
\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\) - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)
( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\)
\(\dfrac{41}{16}\) - \(x\) = \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{41}{16}\) - \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{1}{16}\)
2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\))
\(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)
- \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)+ \(\dfrac{1}{15}\)) - \(x\)
- \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)
\(x\) = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{5}{6}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`3/16 - (x - 5/4) - (3/4 + (-7)/8 - 1) = 2 1/2`
`=> 3/16 - x + 5/4 - (-1/8 - 1) = 2 1/2`
`=> 3/16 - x + 5/4 - (-9/8) = 2 1/2`
`=> 3/16 - x + 19/8 = 2 1/2`
`=> 3/16 - x = 2 1/2 - 19/8`
`=> 3/16 - x =1/8`
`=> x = 3/16 - 1/8`
`=> x = 1/16`
Vậy, `x = 1/16`
`2,`
`1/2* (1/6 - 9/10) = 1/5 - x + (1/15 - (-1)/5)`
`=> 1/2 * (-11/15) = 1/5 - x + 4/15`
`=> -11/30 = x + 1/5 - 4/15`
`=> x + (-1/15) = -11/30`
`=> x = -11/30 + 1/15`
`=> x = -3/10`
Vậy, `x = -3/10.`
Có: \(\left(\left|x\right|-\dfrac{1}{8}\right).\left(-\dfrac{1}{5}\right)^5=\left(-\dfrac{1}{8}\right)^7\)
<=> \(\left|x\right|.\left(-\dfrac{1}{5}\right)^5-\dfrac{1}{8}.\left(-\dfrac{1}{5}\right)^5=\left(-\dfrac{1}{8}\right)^7\)
<=> \(\left|x\right|.\left(-\dfrac{1}{5}\right)^5+\dfrac{1}{8}.\left(\dfrac{1}{5}\right)^5=\left(-\dfrac{1}{8}\right)^7\)
<=> \(\left|x\right|.\dfrac{-1}{3125}=-\dfrac{1}{8^7}-\dfrac{1}{8}.\dfrac{1}{3125}\)
<=> \(\left|x\right|=\dfrac{\dfrac{-1.3125}{8^7.3125}-\dfrac{1}{8.3125}}{-\dfrac{1}{3125}}=\dfrac{\dfrac{-3125}{8^7}.\dfrac{1}{3125}-\dfrac{1}{8}.\dfrac{1}{3125}}{-\dfrac{1}{3125}}=\dfrac{\dfrac{-1}{3125}\left(\dfrac{3125}{8^7}+\dfrac{1}{8}\right)}{-\dfrac{1}{3125}}\)
<=> \(\left|x\right|=\dfrac{3125}{8^7}+\dfrac{8^6}{8^7}=\dfrac{265269}{2097152}\)
=> x\(\in\left\{\dfrac{265269}{2097152};\dfrac{-265269}{2097152}\right\}\)