CMR nếu a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!
Ta có :
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)
\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)
\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)
Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :
\(A+B=x\left(x^2-3y\right)+2y\)
\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)
\(\Rightarrow\)Các đa thức này là các số hữa tỉ \(\left(đpcm\right)\)
câu hỏi khó hiểu quá tự nhiên CMR: nếu a,b,c và \(\sqrt{a}\)+\(\sqrt{b}\)+\(\sqrt{c}\) là số hữu tỉ chứ chả có khâu c/m j