Tìm x
a) 5.x+43:16=49
b) 2x+5.2x=6.27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.1+3+5+7+...+2x+1=225
[(2x+1-1):2+1]x(2x+1+1):2=225
(x+1)x(2x+2):2=225
(x+1)x(x+1)=225
(x+1)2=225
(x+1)2=152
x+1=15
x=14
_______________
b. 130-[5.(9-x)+43]=47
5.(9-x)+43=83
5.(9-x)=40
9-x=8
x=1
_______________
c.16x<324
24x<220
=>x∈{0;1;2;3;4}
a: =>(x+1)^2=225
=>x+1=15
=>x=14
b: =>[5*(9-x)+43]=130-47=83
=>5(9-x)=40
=>9-x=8
=>x=1
c: =>2^4x<2^20
=>4x<20
=>0<x<5
4. ( x - 250 ) : 6 = 64 - 12
( x- 250 ) : 6 = 52
x - 250 = 312
x = 562
5. 10x = 1030
=> x = 103
6. 30x = 120
x = 4
7. \(x=2023\)
\(8.165-\left(35:x+3\right).19=13\)
\(\left(35:x+3\right).19=152\)
\(35:x+3=8\)
\(35:x=5\)
\(x=7\)
4) \(\left(x-250\right)\div6=4^3-2^2\times3\)
\(\left(x-250\right)\div6=64-4\times3\)
\(\left(x-250\right)\div6=64-12=52\)
\(x-250=52\times6=312\)
\(x=312+250\)
\(x=562\)
5) \(2x+3x+5x=1030\)
\(x\left(2+3+5\right)=1030\)
\(10x=1030\)
\(x=1030\div10\)
\(x=103\)
6) \(15x-35x+50x=120\)
\(x\left(15-35+50\right)=120\)
\(30x=120\)
\(x=120\div30\)
\(x=4\)
7) \(\dfrac{1}{2}x+\dfrac{1}{6}x+\dfrac{1}{3}x=2023\)
\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)=2023\)
\(x\times1=2023\)
\(x=2023\)
8) \(165-\left(35\div x+3\right)\times19=13\)
\(\left(35\div x+3\right)\times19=165-13\)
\(\left(35\div x+3\right)\times19=152\)
\(35\div x+3=152\div19=8\)
\(35\div x=8-3=5\)
\(x=35\div5\)
\(x=7\)
\(1,x^3-3x^2=0\)
\(x^2\left(x-3\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=3\left(TM\right)\end{cases}}}\)
\(2,3x^3-48x=0\)
\(3x\left(x^2-16\right)=0\)
\(\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x^2=16\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=\pm4\left(TM\right)\end{cases}}}}\)
\(3,5x\left(x-1\right)=x-1\)
\(5x^2-5x=x-1\)
\(5x^2-6x+1=0\)
\(5x^2-5x-x+1=0\)
\(5x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(5x-1\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}\orbr{\begin{cases}x=\frac{1}{5}\left(TM\right)\\x=1\left(TM\right)\end{cases}}}\)
\(4,2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\)
\(-x^2-3x+10=0\)
\(-x^2-5x+2x+10=0\)
\(-x\left(x+5\right)+2\left(x+5\right)=0\)
\(\left(x+5\right)\left(2-x\right)=0\)
\(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\orbr{\begin{cases}x=-5\left(TM\right)\\x=2\left(TM\right)\end{cases}}}\)
\(5,2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x-26=0\)
\(-13\left(x+2\right)=0\)
\(x=-2\left(TM\right)\)
Trả lời:
1, \(x^3-3x^2=0\)
\(\Leftrightarrow x^2\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy x = 0; x = 3 là nghiệm của pt.
2, \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)
Vậy x = 0; x = 4; x = - 4 là nghiệm của pt.
3, \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = 1; x = 1/5 là nghiệm của pt.
4, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Vậy x = - 5; x = 2 là nghiệm của pt.
5, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Vậy x = - 2 là nghiệm của pt.
a) \(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow80x=480\Rightarrow x=6\)
b) \(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow4x=0\Rightarrow x=0\)
c) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
\(a,\Leftrightarrow\left(x-5\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
a, |3x - 6| + 4x + 3 = 12
|3x - 6| = 12 - 3 - 4x
|3x - 6| = 9 - 4x
TH1: 3x - 6 = 9 - 4x ⇔ 3x + 4x = 9 + 6 ⇔ 7x = 15 ⇔ x = 15/7
TH2: 3x - 6 = 4x - 9 ⇔ 3x - 4x = -9 + 6 ⇔ -x = -3 ⇔ x = 3.
b, |6x - 12| + 3x - 1 = 43
|6x - 12| = 43 + 1 - 3x
|6x - 12| = 44 - 3x
TH1: 6x - 12 = 44 - 3x ⇔ 6x + 3x = 44 + 12 ⇔ 9x = 56 ⇔ x = 6.
TH2: 6x - 12 = 3x - 44 ⇔ 6x - 3x = -44 + 12 ⇔ 3x = -32 ⇔ x = -32/3.
c, |8 - 4x| + 7x - 5 = 16 - 2x
|8 - 4x| = (16 + 5) + (-2x - 7x)
|8 - 4x| = 21 - 9x
TH1: 8 - 4x = 21 - 9x ⇔ -4x + 9x = 21 - 8 ⇔ 5x = 13 ⇔ x = 13/5
TH2: 8 - 4x = 9x - 21 ⇔ -4x - 9x = -21 - 8 ⇔ -15x = -29 ⇔ x = 29/15
2: Tìm x
a) Ta có: x+25=40
nên x=40-25=15
Vậy: x=15
b) Ta có: 198-(x+4)=120
\(\Leftrightarrow x+4=198-120=78\)
hay x=78-4=74
Vậy: x=74
c) Ta có: \(\left(2x-7\right)\cdot3=125\)
\(\Leftrightarrow2x-7=\dfrac{125}{3}\)
\(\Leftrightarrow2x=\dfrac{125}{3}+7=\dfrac{125}{3}+\dfrac{21}{3}=\dfrac{146}{3}\)
\(\Leftrightarrow x=\dfrac{146}{3}:2=\dfrac{146}{6}=\dfrac{73}{3}\)
Vậy: \(x=\dfrac{73}{3}\)
d) Ta có: \(x+16⋮x+1\)
\(\Leftrightarrow x+1+15⋮x+1\)
mà \(x+1⋮x+1\)
nên \(15⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(15\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
hay \(x\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
Vậy: \(x\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
\(a,x+25=40\\ \Rightarrow x=40-25\\ \Rightarrow x=15\\ b,198-\left(x+4\right)=120\\ \Rightarrow-\left(x+4\right)=120-198\\ \Rightarrow-\left(x+4\right)=-78\\ \Rightarrow x+4=78\\ \Rightarrow x=78-4\\ \Rightarrow x=74\\ c,\left(2x-7\right).3=125\\ \Rightarrow2x-7=\dfrac{125}{3}\\ \Rightarrow2x=\dfrac{125}{3}+7\\ \Rightarrow2x=\dfrac{146}{3}\\ \Rightarrow x=\dfrac{146}{3}:2\Rightarrow x=\dfrac{73}{3}\\ d,\left(x+16\right)⋮\left(x+1\right)\\ \Rightarrow\left[\left(x+1\right)+15\right]⋮\left(x+1\right)\\ mà:\left(x+1\right)⋮\left(x+1\right)\\ \Rightarrow15⋮\left(x+1\right)\\ \Rightarrow\left(x+1\right)\inƯ\left(15\right)\\ \Rightarrow\left(x+1\right)\in\left\{-15;-1;1;15\right\}\\ \Rightarrow x\in\left\{-16;-2;0;14\right\}\)
Tự kết luận nhé bạn
\(2.3^x=6.27^4\\ =>3^x=3.\left(3^3\right)^4\\ =>3^x=3^{13}\\ =>x=13\)
2.3x=6.274
2.3x=2.3.3.3.34
2.3x=2.(34)4
2.3x=2.316
=> x = 16
mik ko chắc đâu nhưng có lẽ đúng
a,-2x -(x-17)=34-(-x+25)
-2x-x+17=34+x-25
-3x+17=9+x
-3x-x=9-17
-4x=-8
-->4x=8
x=8:4
x=2
Vậy x=2
b,17-(16x-37)=2x+43
17-16x+37=2x+43
20-16x=2x+43
-16x-2x=43-20
-18x=23
x=23:(-18)
x=23/-18
Mà x là số nguyên nên --> x thuộc tập rỗng
c,-2x-3.(x-17)=34-2(-x+25)
-2x-3x+51=34-2.(-x)-25
-5x+51=9-(-2).x
-5x+(-2).x=9-51
-7x=-42
7x=42
x=42:7
x=6
Vậy x=6
\(a,5x+4^3:16=49\)
\(5x+4=49\)
\(\Rightarrow5x=45\)
\(\Rightarrow x=9\)
\(b,2^x+5.2^x=6.2^7\)
\(2^x\left(1+5\right)=6.2^7\)
\(2^x.6=6.2^7\)
\(\Rightarrow x=7\)
a)\(5.x+4^3\div16=49\)
\(\Leftrightarrow5x+4^3\div4^2=49\)
\(\Leftrightarrow5x+4=49\)
\(\Leftrightarrow5x=45\Rightarrow x=9\)
Vậy x= 9
b)\(2^x+5.2^x=6.2^7\)
\(2^x\left(1+5\right)=6.2^7\)
\(2^x.6=6.2^7\Rightarrow2^x=2^7\Rightarrow x=7\)
Vậy x=7