K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2015

\(\frac{10+x}{17+x}=\frac{3}{4}\)=>3.(17+x)=4.(10+x)

= 51+3x=40+4x

=>51-40=4x-3x

=>11=x

vậy x=11

14 tháng 10 2021

\(\Rightarrow x\in\left\{-9;-8;...;16\right\}\)

Tổng là: \(\dfrac{\left(16-9\right)\left(\dfrac{16+9}{1}+1\right)}{2}=91\)

4 tháng 3 2018

1. \(\frac{-7}{12}\)\(\frac{x-1}{4}\)\(\frac{2}{3}\)

=> \(\frac{-7}{12}\)\(\frac{3.\left(x-1\right)}{12}\)\(\frac{8}{12}\)

=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}

Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha

4 tháng 3 2018

1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)

hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)

Vậy \(-7< 3.\left(x-1\right)< 8\)

Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)

mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)

Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)

hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)

tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

17 tháng 3 2017

Ta có : \(\frac{3}{x+2}=\frac{x+2}{3}\) <=> \(\left(x+2\right)^2=3^2\)

                                            => \(\orbr{\begin{cases}x+2=3\\x+2=-3\end{cases}}\)

                                             =>\(\orbr{\begin{cases}x=3-2=1\\x=-3-2=-5\end{cases}}\)

Vậy tập hợp các số nguyên x thỏa mãn là { 1 ; -5 }

17 tháng 3 2017

\(\frac{3}{x+2}=\frac{x+2}{3}\Rightarrow3^2=\left(x+2\right)^2=9\)

\(\Rightarrow x+2=3\)hoặc \(-3\)

Với \(x+2=3\Rightarrow x=1\)

Với \(x+2=-3\Rightarrow x=-5\)

tham khảo https://olm.vn/hoi-dap/detail/2037215608.html

#Học-tốt

31 tháng 12 2019

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

=> \(\frac{xy+yz+xz}{xyz}=1\)

=> xy + yz + xz - xyz = 0 (1)

=> y(x + z) + xy(1 - z) = 0

=> y[x + z + (1 - z).x] = 0

=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)

Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)

Từ (1) ta có : -2 = (-2).1  = (-1).2 

Lập bảng xét các trường hợp

x - 1-121-2
2 - z2-1-21
x0(loại)32-3(loại)
z0(loại)343
y\(y\in\varnothing\)321(loại)

Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)

21 tháng 10 2015

\(\frac{10+x}{17+x}=\frac{3}{4}\)

=> (10+x).4=(17+x).3

=> 40+4x=51+3x

=> 4x-3x=51-40

=> x=11

28 tháng 8 2023

1) \(-4< x< 3\)

\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2\right\}\)

Tổng:

\(\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2\)

\(=\left(-2+2\right)+\left(-1+1\right)+0-3\)

\(=-3\)

2) \(-5< x< 5\)

\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)

Tổng:

\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+3\)

\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0\)

\(=0\)

3) \(-10< x< 6\)

\(\Rightarrow x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

Tổng:

\(\left(-9\right)+\left(-8\right)+\left(-7\right)++\left(-6\right)+\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4+5\)

\(=-24\)

4) \(-6< x< 5\)

\(\Rightarrow x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)

Tổng:

\(\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4\)

\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0-5\)

\(=-5\)

5) \(-5< x< 2\)

\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1\right\}\)

Tổng:

\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1\)

\(=\left(-1+1\right)+0+\left(-4-3-2\right)\)

\(=-6\)

25 tháng 3 2018

\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)

\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)

\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)

\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)

Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)

=> x - 29 = 0

=> x = 29.