Các bài toán về số nguyên tố , hợp số( có lời giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
73 là số nguyên tố
Các số 1431 ; 635 ; 119 là hợp số vì chúng có các ước 3,5,7
Các số nguyên tố từ 2 đến 100
2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 2
Tính chất của số nguyên tố
Kí hiệu là ''b / a'' nghĩa là b là ước của a, kí hiệu a \(⋮\) b nghĩa là a chia hết cho b
1. Ước tự nhiên khác 1 nhỏ nhất của 1 số tự nhiên là nguyên tố
Chứng minh; Giả sử d / a nhỏ nhất; d \(\ne\) 1.
Nếu d không nguyên tố \(\Rightarrow\) d \(=\) d1. d2 ; d1, d2 lớn hơn 1
\(\Rightarrow\) d1 / a với d1 lớn hơn d ; mâu thuẫn với d nhỏ nhất. Vậy d là nguyên tố
2. Cho p là nguyên số; a \(\in\) N; a \(\ne\) 0. Khi đó
a,b \(=\) p \(\Leftrightarrow\) a \(⋮\) p
a,b \(=\) 1\(=\) a p
3. Nếu tích của nhiều số chia hết cho một số nguyên tố p thì có ít nhất một thừa số chia hết cho p
\(II\) ai \(⋮\) p \(\Rightarrow\) \(\exists\)ai \(⋮\)p
4. Ước số dương bé nhất khác 1 của số nguyên tố không vượt qua \(\sqrt{a}\)
5. 2 số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất
6. Tập hợp các số nguyên là vô hạn. Tương đương với viếc ko có nguyên số lớn nhất
Chứng minh; Giả sử có hữu hạn số nguyên tố; p1 bé hơn p2 bé hơn .... pn
Nhật xét a \(=\) p1. p2 .... pn + 1
Ta có; a lớn hơn 1 và a 1 pi; ''i\(=\) a là hợp số, a có nguyên tố pi, hay aMpi và pi M pi. 1M pi ; Mâu thuẫn
Vậy tập hợp các số nguyên tố là vô hạn
Chúc bạn học giỏi
a) Euler phát biểu như sau: " Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố . "
Nên ta có bài giải sau:
6 = 2 + 4
=> 6 = 2 + 2 + 2
7 = 3 + 4
=> 7 = 3 + 2 + 2
8 = 2 + 6
=> 8 = 2 + 2 + 4
Vậy 6 = 2 + 2 + 2
7 = 3 + 2 + 2
8 = 2 + 2 + 4
a) Euler phát biểu như sau: "mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố"
Nên ta có bài giải sau:
6=2+4 (với 4 là số chẳn >2 nên như phát biểu Euler thì sẽ 4 sẽ viết được dưới dạng tổng của 2 số nguyên tố)
=> 6=2+2+2
7=3+4 (lập luận như trên ta cũng có kết quả)
=> 7=3+2+2
8 Hoàn toàn tương tự 6
=> 8=2+6=2+2+4
a, Ta có :
6=2+2+2 7=2+3+2 8=2+3+3
b, Ta có:
30=13+17 32=13+19