K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\left(x^2-xy+y^2\right)\cdot2x+3y\left(x^2-xy+y^2\right)\)

\(=2x^3-2x^2y+2xy^2+3x^2y-3xy^2+3y^3\)

\(=2x^3+x^2y-xy^2+3y^3\)

27 tháng 8 2021

c) \(5x^2+3y+15x+xy=5x\left(x+3\right)+y\left(x+3\right)=\left(x+3\right)\left(5x+y\right)\)

d) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)

e) \(x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)

f) \(x^2-2xy-9+y^2=\left(x^2-2xy+y^2\right)-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

c: \(5x^2+15x+3y+xy\)

\(=5x\left(x+3\right)+y\left(x+3\right)\)

\(=\left(x+3\right)\left(5x+y\right)\)

d: \(x^2+6x+9-y^2\)

\(=\left(x+3\right)^2-y^2\)

\(=\left(x+3-y\right)\left(x+3+y\right)\)

e: \(x^2+2x+1-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1-y\right)\left(x+1+y\right)\)

f: \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-9\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

20 tháng 11 2021

\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

29 tháng 9 2023

a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)

\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)

c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)

d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

29 tháng 9 2023

phần c là x+1 / x2 - 4x +4 mà bn

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

22 tháng 10 2023

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

21 tháng 8 2023

Bài 13:

a) \(501^2\)

\(=\left(500+1\right)^2\)

\(=500^2+2\cdot500\cdot1+1^2\)

\(=250000+1000+1\)

\(=251001\)

b) \(88^2+24\cdot88+12^2\)

\(=88^2+2\cdot12\cdot88+12^2\)

\(=\left(88+12\right)^2\)

\(=100^2\)

\(=10000\)

c) \(52\cdot48\)

\(=\left(50+2\right)\left(50-2\right)\)

\(=50^2-2^2\)

\(=2500-4\)

\(=2496\)

Bài 14:

a) \(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)

\(P=\left(2x\right)^3-1+x^3+1\)

\(P=8x^3+x^3\)

\(P=9x^3\)

b) \(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)

\(Q=x^3-y^3-x^3-y^3+2y^3\)

\(Q=-2y^3+2y^3\)

\(Q=0\)

21 tháng 8 2023

Bài `14`

`a. P = ( 2x - 1 ) ( 4x^2 + 2x + 1 ) + ( x + 1 ) ( x^2 -x+1)`

`=(2x)^3-1^3 + x^3+1^3`

`=8x^3-1+x^3+1`

`= 9x^3`

__

`b, Q = ( x - y ) ( x^2 + xy + y^2 ) - ( x + y ) ( x^2 - xy + y^2)+2y^3`

`=x^3-y^3 -(x^3+y^3)+2y^3`

`=x^3-y^3 -x^3-y^3+2y^3`

`= 0`

a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)

\(=x^3+8y^3-x^3+y^3\)

\(=9y^3\)

b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)

\(=x^3-x^2-x+1-x^3-8\)

\(=-x^2-x-7\)