K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\left(\frac{1}{2}+\frac{2}{2}\right).\left(\frac{1}{3}+\frac{3}{3}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{100}{99}=\frac{100}{2}=50\)

13 tháng 3 2016

A=\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

=>2A=1+\(\frac{1}{2}+...+\frac{1}{2^{98}}\)

=>2A-A=A=\(\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

=>A=\(1-\frac{1}{2^{99}}\)

13 tháng 3 2016

mình chịu thua vì mình cũng gặp câu này mà ko có lời giải

9 tháng 7 2018

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)

\(=\frac{30}{60}+\frac{20}{60}+\frac{15}{60}+\frac{12}{60}\)

\(=\frac{30+20+15+12}{60}\)

\(=\frac{77}{60}\)

_Chúc bạn học tốt_

9 tháng 7 2018

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)

\(=\frac{30}{60}+\frac{20}{60}+\frac{15}{60}+\frac{12}{60}\)

\(=\frac{30+20+15+12}{60}\)

\(=\frac{77}{60}\)

2 tháng 4 2017

Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:

a) Ta có

\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)

\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)

\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)

\(=\sqrt{2017}-1\)

\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)

b) Ta có

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

Tương tự ta có

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......................

\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

Suy ra

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

1 tháng 4 2017

a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5  + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \frac{{(\sqrt 5  + 1)(\sqrt 5  - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017}  + \sqrt {2013} )(\sqrt {2017}  - \sqrt {2013} )}}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \sqrt 5  - 1 + \sqrt 9  - \sqrt 5  + ... + \sqrt {2017}  - \sqrt {2013} \\
 = 1 + \sqrt 5  - \sqrt 5  + \sqrt 9  - \sqrt 9  + ... + \sqrt {2013}  - \sqrt {2013}  + \sqrt {2017} \\
 = 1 + \sqrt {2017} \\
 \Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{100}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{99}\)

\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2S-S=S=2-\frac{1}{2^{100}}=\frac{2^{101}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)

8 tháng 7 2016

3/4 x 8/9 x 15/16 x ... x 99/100 x 120/121 = 3 x 8 x 15 x 99 x 120/ 4 x 9 x 16 x 100 x 121

= ( 1 x 3 ) x ( 2 x 4 ) x ( 3 x 5 ) x ... x ( 9 x 11 ) x ( 10 x 12 ) / ( 2 x 2 ) x ( 3 x 3 ) x ( 4 x 4 ) x ... x ( 10 x 10 ) x ( 11 x 11 )

= ( 1 x 2 x 3 x ... x 10 ) x ( 3 x 4 x 5 x ... x 12 ) / ( 2 x 3 x ... x 11 ) x ( 2 x 3 x ... x 11 ) = 12/11x2 = 6/11

27 tháng 12 2021

= 6/11 nha

5 tháng 2 2019

\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)

Đặt:  \(M=92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}\)

Tách 92  thành tổng của 92 số 1.

\(M=1-\frac{1}{9}+1-\frac{2}{10}+...+1-\frac{91}{99}+1-\frac{92}{100}\)

\(M=\frac{8}{9}+\frac{8}{10}+...+\frac{8}{99}+\frac{8}{100}\)

\(M=\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}\)

Thay M vào A:

\(\Rightarrow A=\frac{\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)

\(\Rightarrow A=\frac{40\cdot\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}{\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}\)

\(\Rightarrow A=40\)

PP/ss: Tớ ko chắc đâu :)))

5 tháng 2 2019

cảm ơn bạn  nhìu lắm