Tìm x biết:
\(\frac{x+1}{-9}=\frac{-4}{x+1}\)
AI GIẢI NHANH NHẤT TẶNG 3 TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}:2x=-\frac{1}{3}\)
\(2x=-\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)
\(=\frac{9+31}{40}=\frac{40}{40}=1\)
Cứ thế là tìm x+1 rồi tìm x
y+3 y
x+5 z
Từ gt,suy ra : (x - 2)(2 - x) = -16.4
-(x - 2)2 = -64
(x - 2)2 = 64
\(\Rightarrow\orbr{\begin{cases}x-2=-8\\x-2=8\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=10\end{cases}}}\)
\(x=-16.4=-64\)
\(x^2=-8^2\)
Vay: x=-8
Ma theo de bai x-2
Nen ta lay x+2
x+2=-8+2=-6
=>\(x=-6\)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
a) \(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)
b) \(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^{22}\)
\(\Leftrightarrow\left(\frac{1}{9}\right)^x=\left(\frac{1}{3}\right)^{66}\)
\(\Leftrightarrow x=66\)
(x+1)2= -4.(-9)
(x+1)2=36
\(\hept{\begin{cases}x+1=6\\x+1=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
\(\frac{x+1}{-9}=\frac{-4}{x+1}\)
\(\Rightarrow(x+1)^2=(-4).(-9)\)
\(\Rightarrow(x+1)^2=36\)
\(\Rightarrow(x+1)^2=6^2\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)