3√2*(√50-2√18+√98)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(3\sqrt{2}\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)\)
\(=3\sqrt{2}\left(5\sqrt{2}-6\sqrt{2}+7\sqrt{2}\right)\)
\(=3\sqrt{2}\cdot6\sqrt{2}=36\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=3\sqrt{2}\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)\)
\(=3\sqrt{2}.\sqrt{50}-3\sqrt{2}.2\sqrt{18}+3\sqrt{2}.\sqrt{98}\)
\(=3\sqrt{100}-6\sqrt{36}+3\sqrt{196}\)
\(=3.10-6.6+3.14\)
\(=30-36+42\)
\(=36\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3\sqrt{50}-2\sqrt{98}-5\sqrt{18}-\sqrt{63}+2\sqrt{28}\)
\(=15\sqrt{2}-14\sqrt{2}-15\sqrt{2}-3\sqrt{7}+4\sqrt{7}\)
\(=-14\sqrt{2}-3\sqrt{7}+4\sqrt{7}\)
\(=-14\sqrt{2}+\sqrt{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=98.42-\left\{50.\left[\left(18-2^3\right):2+3^2\right]\right\}\)
\(=98.42-\left\{50.\left[\left(18-8\right):2+9\right]\right\}\)
\(=98.42-\left[50\left(10:2+9\right)\right]\)
\(=98.42-\left(50.14\right)\)
\(=4116-700=3416\)
\(B=-80-\left[-130-\left(12-4\right)^2\right]+2008^0\)
\(=-80-\left(-130-8^2\right)+1\)
\(=-80-\left(-130-64\right)+1\)
\(=-80+130+64+1\)
\(=115\)
\(C=1024:2^4+140:\left(38+2^5\right)-7^{23}:7^{21}\)
\(=1024:16+140:\left(38+32\right)-7^2\)
\(=64+140:70-49\)
\(=64+2-49=17\)
\(D=\left(2^{17}+15^4\right).\left(3^{19}-2^{17}\right).\left(2^4-4^2\right)\)
\(=\left(2^{17}+15^4\right).\left(3^{19}-2^{17}\right).\left(16-16\right)\)
\(=\left(2^{17}+15^4\right).\left(3^{19}-2^{17}\right).0\)
\(=0\)
\(E=100+98+96+....+4+2-97-95-....-3-1\)
\(=100+\left(98-97\right)+\left(96-95\right)+.....+\left(2-1\right)+\left(1-0\right)\)
\(=100+1+1+...+1+1\)
Vì lập được 49 cặp nên sẽ có 49 số 1
\(\Rightarrow E=100+1.49=100+49=149\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{50}-3\sqrt{98}+2\sqrt{8}+3\sqrt{32}-5\sqrt{18}\)
\(=5\sqrt{2}-21\sqrt{2}+4\sqrt{2}+12\sqrt{2}-15\sqrt{12}\)
\(=-15\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=50-3\sqrt{98}+2\sqrt{8}+3\sqrt{32}-5\sqrt{18}\)
\(=50-3.\sqrt{7^2.2}+2\sqrt{2^2.2}+3\sqrt{4^2.2}-5\sqrt{3^2.2}\)
\(=50-3.7\sqrt{2}+2.2\sqrt{2}+3.4\sqrt{2}-5.3\sqrt{2}\)
\(=50-21\sqrt{2}+4\sqrt{2}+12\sqrt{2}-15\sqrt{2}\)
\(=50+\sqrt{2}.\left(-21+4+12-15\right)\)
\(=50+\sqrt{2}.\left(-20\right)\)
\(=50-20\sqrt{2}\)
\(C=\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)\left(\sqrt{3}+\sqrt{5}-\sqrt{7}\right)\)
\(=\left(\sqrt{3}+\sqrt{5}\right)^2-\sqrt{7}^2\)
\(=\sqrt{3}^2+2.\sqrt{3}.\sqrt{5}+\sqrt{5}^2-7\)
\(=2\sqrt{15}+3+5-7\)
\(=2\sqrt{15}+1\)
Nghĩ ra xong tính thử thấy đúng định nàm xong thấy mẹ giải r ấy:")). Với nại con còn nhỏ nắm, hong bic nhiều cái mà nớp 9 hay sử dụng nữa ý, sợ dùng sai;-;.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(227+50+23=\left(227+23\right)+50=250+50=300\)
b) \(135+360+65+40=\left(135+65\right)+\left(360+40\right)=200+400=600\)
c) \(1+2+3+4+5+...+97+98+99+100\)
\(=\left(100+1\right)+\left(99+2\right)+...+\left(50+51\right)\)
\(=101+101+101+...+101\)
\(=101\cdot50\)
\(\Leftrightarrow5050\)
d) \(115\cdot13-13\cdot15=13\cdot\left(115-15\right)=13\cdot100=1300\)
e) \(50-49+48-47+...+4-3+2-1\)
\(=\left(50-49\right)+\left(48-47\right)+...+\left(2-1\right)\)
\(=1+1+1+1+..+1\)
\(=1\cdot25\)
\(=25\)
f) \(30\cdot40\cdot50\cdot60=10\cdot3+10\cdot4+10\cdot5+10\cdot6\)
\(=10\cdot10\cdot10\cdot10\cdot3\cdot4\cdot5\cdot6\)
\(=10000\cdot360\)
\(=3600000\)
g) \(27\cdot36+27\cdot64=27\cdot\left(36+64\right)=27\cdot100=2700\)
h) \(5\cdot2^2-18:3=5\cdot4-18:3=20-6=14\)
i) \(13\cdot17-256:16+14:7-2021^0\)
\(=13\cdot17-4^4:4^2+2-1\)
\(=13\cdot17-16+2-1\)
\(=13\cdot17-17\)
\(=17\cdot\left(13-1\right)\)
\(=204\)
j) \(7^2-36:3=49-12=37\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.3\sqrt{2}\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)=30-36+42=36\)
\(b.B=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{13+30\sqrt{2}+30}=\sqrt{25+2.5\sqrt{18}+18}=\sqrt{\left(5+\sqrt{18}\right)^2}=5+3\sqrt{2}\)
\(3\sqrt{2}\left(\sqrt{50}-2\sqrt{18} + \sqrt{98}\right)\)
\(=3\sqrt{2}\left(\sqrt{25.2}-2\sqrt{9.2}+\sqrt{49.2}\right)\)
\(=3\sqrt{2}.\left(5\sqrt{2}-6\sqrt{2}+7\sqrt{2}\right)\)
\(=3\sqrt{2}.6\sqrt{2}\)
\(=36\)