Phương thức tách hạng tử
a) \(x^2-6x+8\)
b) \(x^2-4x+3\)
c) \(x^2-x-12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)
b. \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)
c. \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)
a) \(x^2-6x+8=x^2-4x-2x+8=x\left(x-4\right)-2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
c) \(x^2-x-12=x^2-4x+3x-12=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)
a) x^2 -6x +8
= x^2 - 2x -4x +8
= x(x -2) - 4 ( x-2)
= (x-2)(x-4)
b) x^2 - 4x +3
= x^2 -x - 3x +3
= x(x-1) -3(x-1)
= (x-1)(x-3)
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
a) \(=x^2-2x-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
c) \(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1-6\right)\)
\(=x\left(x+1\right)\left(x-7\right)\)
a. 6x3-x2-486x+81
= 6x3-54x2+53x2-477x-9x+81
= 6x2.(x-9)+53x.(x-9)-9.(x-9)
= (x-9).(6x2+53x-9)
= (x-9)(6x2+54x-x-9)
=(x-9)[6x.(x+9)-(x+9)]=(x-9)(x+9)(6x-1)
b. x3-5x2+3x+9
= x3+x2-6x2-6x+9x+9
=x2.(x+1)-6x.(x+1)+9.(x+1)
=(x+1)(x2-6x+9)=(x+1)(x-3)2
c. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2.(x+1)+2x.(x+1)+4.(x+1)
= (x+1)(x2+2x+4)
d.
a) \(x^2-6x+8\)
\(=x^2-2\cdot x\cdot3+3^2-1\)
\(=\left(x-3\right)^2-1^2\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
Còn lại tương tự
a) \(x^2-6x+8=x^2-2x-4x+8\)
\(=\left(x^2-2x\right)-\left(4x-8\right)\)
=x(x-2)-4(x-2) = (x-2)(x-4)
a) x2 + 4x + 3
= x2 + 3x + x +3
= ( x2 + 3 ) + ( x + 3 )
= x ( x + 3 ) + ( x + 3 )
= ( x + 3 ) ( x + 1 )
b) 4x2 - 4x - 3
= 4x2 + 2x - 6x - 3
= ( 4x2 + 2x ) - ( 6x + 3 )
= 2x ( 2x + 1 ) - 3 ( 2x + 1 )
= ( 2x + 1 )( 2x - 3 )
c) x2 - x - 12
= x2 + 3x - 4x - 12
= ( x2 + 3x ) - ( 4x + 12 )
= x ( x + 3 ) - 4 ( x + 3 )
= ( x + 3 ) ( x - 4 )
d) 4x4 - 4x2y2 - 8y4
= 4 ( x4 - x2y2 - 2y4 )
Hk tốt
\(x^2-6x+8\)
\(=x^2-2x-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x+3\right)\left(x-4\right)\)
a) \(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)\\ =\left(x-2\right)\left(x-4\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)\\ =\left(x-1\right)\left(x-3\right)\)
c) \(x^2-x-12=x^2+3x-4x-12=x\left(x+3\right)-4\left(x+3\right)\\ =\left(x+3\right)\left(x-4\right)\)