B= 1 trên 3.4 + 1 trên 4.5 + 1 trên 5. 6 + 1 trên 6.7 +1 trên 7.8
C= 1 trên 4.5 +1 trên 5.6 + 1 trên 6.7 + 1 trên 7.8 +1 trên 8.9
D= 2 3.5 + 2 5.7 + 2 7.9 + 2 9.11 +2 11.13
E = 3 1.4 + 3 4.7 + 3 7.10 + 3 10.13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\)
A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )
A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )
A= 5. (\(1-\frac{1}{100}\))
A= 5.\(\frac{99}{100}\)
A= \(\frac{99}{20}\)
B = \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)
= \(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)- \(\frac{1}{10}\)
= \(\frac{1}{2}\) - \(\frac{1}{10}\)
= \(\frac{2}{5}\)
\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=5\left(1-\frac{1}{100}\right)\)
\(A=5.\frac{99}{100}\)
\(A=\frac{99}{20}\)
\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{2}-\frac{1}{10}\)
\(B=\frac{2}{5}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(C=\frac{1}{3}-\frac{1}{15}\)
\(C=\frac{4}{15}\)
\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=5\left(1-\frac{1}{100}\right)\)
\(A=5.\frac{99}{100}\)
\(A=\frac{99}{20}\)
\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{2}-\frac{1}{10}\)
\(B=\frac{2}{5}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(C=\frac{1}{3}-\frac{1}{15}\)
\(C=\frac{4}{15}\)
a,0,36.350+1,2.20.3+9.4.4,5
=13.3.35+12.2.3+9.2.3.3
=3.(13.35+12.2+.9.2.3)
=3.(455+24+54)
=3.533
=1599
b,2015.2016-5/2015.2015+2010
=4062240-5+2010
=4064245
c,2/1.3+2/3.5+2/5.7+...+2/71.73
=1-1/3+1/3-1/5+1/5-1/7+...+1/71-1/73
=1-1/73
=72/73
d,(1+1/2).(1+1/3)+...+(1+1/2018)
=3/2.4/3.5/4+...+2019/2018
=2019/2
e,E=1/4.5+1/5.6+1/6.7+...+1/80.81(làm tương tự với phần d nên mình làm ngắn
=1/4-1/81
=77/324
f,F=3/2.3+3/3.4+...+3/99.100
=3.(1/2.3+1/3.4+...+1/99.100)(làm tương tự với d
=3.(1/2-1/100)
=3.49/100
=147/100
gG=5/1.4+5/4.7+...+5/61.64
3G=5.(3/1.4+3./4.7+...+3/61.64)
=5.(1-1/64)
=5.63/64
=315/64
ok nha bạn,mình giữ đúng lời hứa.
a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25
= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25
= 1/5 - 1/25
= 4/25
b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101
= 1 - 1/101
= 100/101
c) 3/1.4 + 3/4.7 + ... + 3/2002.2005
= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005
= 1 - 1/2005
= 2004/2005
d) 5/2.7 + 5/7.12 + ... + 5/1997.2002
= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002
= 1/2 - 1/2002
= 500/1001
a,A = \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)
A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
B=\(1-\frac{1}{101}=\frac{100}{101}\)
c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)
C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)
C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)
d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)
D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)
D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)
suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6
3a^2+9a+6=3a^2+9a+6
câu b)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}-\dfrac{1}{5\cdot6}-\dfrac{1}{6\cdot7}-\dfrac{1}{7\cdot8}-\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{2}-\dfrac{1}{9}\right)\)
`=`\(\dfrac{1}{3}-\dfrac{7}{18}=-\dfrac{1}{18}\)
1) a) A=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{3}-\frac{1}{8}=\frac{5}{24}\)
c) C=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(C=1-\frac{1}{101}\)
\(C=\frac{100}{101}\)
d) Sửa đề: thay \(\frac{3}{92.98}\)=\(\frac{3}{92.95}\)
\(D=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}\)
\(D=\frac{1}{2}-\frac{1}{95}\)
\(D=\frac{95-2}{190}=\frac{93}{190}\)
Các bài trên áp dụng theo tính chất: \(\frac{a}{b\left(b+a\right)}\frac{1}{b}-\frac{1}{b+a}\)
Ta có: \(B=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{3}-\frac{1}{8}\)
\(=\frac{5}{24}\)
Vậy \(B=\frac{5}{24}\)
Ta có: \(C=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{4}-\frac{1}{9}\)
\(=\frac{5}{36}\)
Vậy \(C=\frac{5}{36}\)