K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Ta có: \(B=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{3}-\frac{1}{8}\)

\(=\frac{5}{24}\)

Vậy \(B=\frac{5}{24}\)

5 tháng 8 2018

Ta có: \(C=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{4}-\frac{1}{9}\)

\(=\frac{5}{36}\)

Vậy \(C=\frac{5}{36}\)

2 tháng 5 2016

A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\) 

A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )

A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )

A= 5. (\(1-\frac{1}{100}\))

A= 5.\(\frac{99}{100}\)

A= \(\frac{99}{20}\)

23 tháng 3 2017

B = \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)

    = \(\frac{1}{2}\)-  \(\frac{1}{3}\)+\(\frac{1}{3}\)-   \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)-     \(\frac{1}{10}\)

    =  \(\frac{1}{2}\) -     \(\frac{1}{10}\)

     =       \(\frac{2}{5}\)

23 tháng 6 2015

\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=5\left(1-\frac{1}{100}\right)\)

\(A=5.\frac{99}{100}\)

\(A=\frac{99}{20}\)

 

\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(B=\frac{1}{2}-\frac{1}{10}\)

\(B=\frac{2}{5}\)

 

\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(C=\frac{1}{3}-\frac{1}{15}\)

\(C=\frac{4}{15}\)

23 tháng 6 2015

\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=5\left(1-\frac{1}{100}\right)\)

\(A=5.\frac{99}{100}\)

\(A=\frac{99}{20}\)

 

\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(B=\frac{1}{2}-\frac{1}{10}\)

\(B=\frac{2}{5}\)

 

\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(C=\frac{1}{3}-\frac{1}{15}\)

\(C=\frac{4}{15}\)

7 tháng 6 2018

làm dài lắm,nếu muốn thì k minh còn ko thì thôi

7 tháng 6 2018

a,0,36.350+1,2.20.3+9.4.4,5

=13.3.35+12.2.3+9.2.3.3

=3.(13.35+12.2+.9.2.3)

=3.(455+24+54)

=3.533

=1599

b,2015.2016-5/2015.2015+2010

=4062240-5+2010

=4064245

c,2/1.3+2/3.5+2/5.7+...+2/71.73

=1-1/3+1/3-1/5+1/5-1/7+...+1/71-1/73

=1-1/73

=72/73

d,(1+1/2).(1+1/3)+...+(1+1/2018)

=3/2.4/3.5/4+...+2019/2018

=2019/2

e,E=1/4.5+1/5.6+1/6.7+...+1/80.81(làm tương tự với phần d nên mình làm ngắn

     =1/4-1/81

     =77/324

f,F=3/2.3+3/3.4+...+3/99.100

=3.(1/2.3+1/3.4+...+1/99.100)(làm tương tự với d

=3.(1/2-1/100)

=3.49/100

=147/100

gG=5/1.4+5/4.7+...+5/61.64

3G=5.(3/1.4+3./4.7+...+3/61.64)

     =5.(1-1/64)

     =5.63/64

     =315/64

ok nha bạn,mình giữ đúng lời hứa.

7 tháng 6 2016

a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25

= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25

= 1/5 - 1/25

= 4/25

b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101

= 1 - 1/101

= 100/101

c) 3/1.4 + 3/4.7 + ... + 3/2002.2005

= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005

= 1 - 1/2005

= 2004/2005

d) 5/2.7 + 5/7.12 + ... + 5/1997.2002

= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002

= 1/2 - 1/2002

= 500/1001

7 tháng 6 2016

a,A =  \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)

A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)

B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

B=\(1-\frac{1}{101}=\frac{100}{101}\)

c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)

C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)

C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)

d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)

D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)

D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)

6 tháng 2 2023

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

6 tháng 2 2023

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

15 tháng 9 2017

câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)

suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6

3a^2+9a+6=3a^2+9a+6

câu b) 

17 tháng 9 2017

^ là gì vậy bạn

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}-\dfrac{1}{5\cdot6}-\dfrac{1}{6\cdot7}-\dfrac{1}{7\cdot8}-\dfrac{1}{8\cdot9}\)

`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)

`=`\(\dfrac{1}{3}-\left(\dfrac{1}{2}-\dfrac{1}{9}\right)\)

`=`\(\dfrac{1}{3}-\dfrac{7}{18}=-\dfrac{1}{18}\)

31 tháng 3 2019

1) a) A=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{3}-\frac{1}{8}=\frac{5}{24}\)

c) C=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(C=1-\frac{1}{101}\)

\(C=\frac{100}{101}\)

d) Sửa đề: thay \(\frac{3}{92.98}\)=\(\frac{3}{92.95}\)

\(D=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}\)

\(D=\frac{1}{2}-\frac{1}{95}\)

\(D=\frac{95-2}{190}=\frac{93}{190}\)

Các bài trên áp dụng theo tính chất: \(\frac{a}{b\left(b+a\right)}\frac{1}{b}-\frac{1}{b+a}\)