K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

\(=\left(x^4+y^2\right)\left(xy^5+6\right)=x^5y^5+6x^4+xy^7+6y^2\)

15 tháng 9 2021

a) (x2y2 –

xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy+ 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3

13 tháng 11 2016

\(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)2xy}\)

=\(\frac{x^2+5x+y^2+5y+2xy-3}{x^2+6x+y^2+6y+2xy}\)

triệt tiêu x2;y2;2xy ta được:

\(\frac{5x+5y-3}{6x+6y}=\frac{5\left(x+y\right)-3}{6\left(x+y\right)}\)

=\(\frac{5.2010-3}{6.2010}=\frac{3349}{4020}\)

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
29 tháng 7 2023

a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)

\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)

\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)

\(Q=\left(x-y-2x-4y\right)^2\)

\(Q=\left(-x-5y\right)^2\)

b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)

\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)

\(A=\left[\left(xy+2\right)-2\right]^3\)

\(A=\left(xy+2-2\right)^3\)

\(A=\left(xy\right)^3\)

\(A=x^3y^3\)

c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)

\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)

\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)

\(=0\)

a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2

=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2

b: =(xy+2-2)^3=(xy)^3=x^3y^3

c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)

=24x+2x^3-2x^3-24x

=0

19 tháng 4 2017

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3



19 tháng 4 2017

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3


`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.