Tìm GTNN
\(M=\frac{x}{\left(x+1995\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+2+\frac{1}{x^2y^2}\)
\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)
Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)
Thay vào ta tính được:
\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)
\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)
Đánh máy xong hết lại bấm hủy-.-
theo nghiệm Fx=Gx mũ 2
suy ra x mũ 2 +1 mũ x 2
suy ra chịch chịch chịch
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2
Mình ko chắc lắm :
Áp dụng BĐT AM - GM ta có :
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=\frac{x^2y^2+1}{y^2}.\frac{x^2y^2+1}{x^2}=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}\)
\(=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+\frac{255}{256.\left(xy\right)^2}+2\)
\(\ge2.\frac{1}{16}+\frac{255}{256.\left(\frac{\left(x+y\right)^2}{4}\right)^2}+2\)
\(=\frac{1}{8}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)
Khi \(x=y=\frac{1}{2}\)
Chúc bạn học tốt !!!
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
AM-GM thôi :))
\(M=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}\)
Áp dụng BĐT AM-GM:
\(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\ge2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}=2\)
\(\frac{x^2+y^2}{2xy}\ge\frac{2xy}{2xy}=1\)
\(\Rightarrow VT\ge3+2+1=6\)
Dấu = xảy ra khi x=y
Ta có : \(M=\frac{x}{\left(x+1995\right)^2}\)
Đặt \(x+1995=y\left(y\ne0\right)\)
\(\Rightarrow x=y-1995\)
\(\Rightarrow M=\frac{y-1995}{y^2}\)
\(M=\frac{1}{y}-\frac{1995}{y^2}\)
\(-1995M=-\frac{1995}{y}+\frac{1995^2}{y^2}\)
\(-1995M=\left(\frac{1995^2}{y^2}-\frac{1995}{y}+\frac{1}{4}\right)-\frac{1}{4}\)
\(-1995M=\left(\frac{1995}{y}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Do \(\left(\frac{1995}{y}-\frac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-1995M\ge\frac{1}{4}\)
\(\Leftrightarrow M\le-\frac{1}{7980}\)
Dấu "=" xảy ra khi :
\(\frac{1995}{y}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1995}{y}=\frac{1}{2}\Leftrightarrow y=3990\)
Mà \(x=y-1995\)
\(\Leftrightarrow x=3990-1995=1995\)
Vậy \(M_{Max}=-\frac{1}{7980}\Leftrightarrow x=1995\)
cách khác nha :
https://olm.vn/hoi-dap/question/1193316.html
:))