K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Đặt \(a-b=x\) , \(b-c=y\) và \(c-a=z\)

\(\Rightarrow x+y+z=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

Chắc bạn cùng biết  \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Vậy \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Chúc bạn học tốt.

24 tháng 10 2021

Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Leftrightarrow x+y+z=a+b+c\)

Do đó \(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(\Leftrightarrow A=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ \Leftrightarrow A=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow A=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\\ \Leftrightarrow A=3\cdot2b\cdot2c\cdot2a=24abc\)

12 giờ trước (17:07)

a^3+b^3+c^3-3abc

=a^3 + b^3 + 3ba^2 + 3ab^2 + b^3 - 3ab(a+b) +c^3 _ 3abc

=(a+b)^3+c^3 -3ab(a+b+c)

=(a+b+c)(a^2+2ab+b^2-bc-ca+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ab-bc)

31 tháng 8 2019

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)

\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)

\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)

\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)

16 tháng 8 2022

chưa tối giản :v