Bài 8: Tìm giá trị nhỏ nhất của
A=√𝑥2 −4𝑥+25 ,
C=3+√𝑥 √𝑥+1
B=√𝑥2 −6𝑥+30
D=√𝑥2 −4𝑥+7+√2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^2-4x+4\right)+\left(y^2+8y+16\right)+2021\\ P=\left(x-2\right)^2+\left(y+4\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-4\end{matrix}\right.\)
Lời giải:
$P(x)=x^2+y^2-4x+8y+2041=(x^2-4x+4)+(y^2+8y+16)+2021$
$=(x-2)^2+(y+4)^2+2021\geq 0+0+2021=2021$
Vậy $P(x)$ min = $2021$ khi $x-2=y+4=0$
$\Leftrightarrow x=2; y=-4$
a) Ta có: \(x^2-8x+7=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
b) Ta có: \(x^2+x-20=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
c) Ta có: \(3x^2+4x-4=0\)
\(\Leftrightarrow3x^2+6x-2x-4=0\)
\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) Ta có: \(3x^2-4x-7=0\)
\(\Leftrightarrow3x^2-7x+3x-7=0\)
\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)
e) Ta có: \(5x^2-16x+3=0\)
\(\Leftrightarrow5x^2-15x-x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
f) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a)
\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)
c)
\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)
b)
\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
d)
\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)
e)
\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
f)
\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(\)
a) \(14x^3y:10x^2=\dfrac{7}{5}xy\)
b) \(\left(x^3-27\right):\left(3-x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right):\left(3-x\right)\)
\(=-\left(3-x\right)\left(x^2+3x+9\right):\left(3-x\right)\)
\(=-\left(x^2+3x+9\right)\)
\(=-x^2-3x-9\)
a) 14x3y:10x2=\(\dfrac{7}{5}\)xy
b) (x3−27):(3−x)
=(x−3)(x2+3x+9):(3−x)
=−(3−x)(x2+3x+9):(3−x)
=−(x2+3x+9)=
=−x2−3x−9
Bài 4:
a) x = -3. Ta có: -3a + 5 = 0 -> -3a = -5 -> a = \(\frac{-5}{-3}\)--> a = \(\frac{5}{3}\)
b) x = \(\frac{1}{2}\). Ta có: \(\frac{1}{2}\).2 + 4a\(\frac{1}{2}\) - 5 = 0 --> \(\frac{1}{2}\). (2 + 4a) = 5 --> 2 +4a = 5:\(\frac{1}{2}\)--> 2+ 4a = 10 --> 4a = 10-2 = 8 --> a = 2
c) x = -1. Ta có: 5.-1.3 + -1.2 - -1 + a = 0 --> -1 (15 + 2 - 1) + a = 0 --> -1. 16 + a = 0 --> -16 + a = 0 --> a = 16
d) x = 1. Ta có: a.1.4 - 2.1.3 + 1- 1 = 0 --> 1. (4a - 2.3 +1) - 1 = 0 --> 1.( 4a - 6 +1) = 1 --> 1.(4a-5) = 1 --> 4a = 6 --> a = \(\frac{3}{2}\)
\(A=\sqrt{x^2-4x+25}=\sqrt{\left(x-2\right)^2+21}\)
Ta có : \(\left(x-2\right)^2\ge0\) => \(\left(x-2\right)^2+21\ge21\left(\forall x\right)\) => \(\sqrt{\left(x-2\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-2\right)^2}=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) x = 2
Vậy giá trị nhỏ nhất của A là : \(\sqrt{21}\) khi x = 2
\(B=\sqrt{x^2-6x+30}=\sqrt{\left(x-3\right)^2+21}\)
Vì \(\sqrt{\left(x-3\right)^2}\ge0\left(\forall x\right)\)=> \(\sqrt{\left(x-3\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\) \(x-3=0\)
\(\Leftrightarrow\) \(x=3\)
Vậy giá trị nhỏ nhất của B là : \(\sqrt{21}\) khi x = 3
\(D=\sqrt{x^2-4x+7}+\sqrt{2}=\sqrt{\left(x-2\right)^2+3}+\sqrt{2}\)
Vì